Distribution and transformation of air pollution in the atmospheric boundary layer of the southern basin of lake Baikal, potential risks for the lake ecosystem

2021 ◽  
Author(s):  
Tamara V. Khodzher ◽  
Vladimir A. Obolkin ◽  
Yelena V. Molozhnikova ◽  
Olga G. Netsvetaeva ◽  
Ludmila P. Golobokova
2021 ◽  
Author(s):  
Hannah Marley ◽  
Kim Dirks ◽  
Andrew Neverman ◽  
Ian McKendry ◽  
Jennifer Salmond

<p><span><span>A brown air pollution haze that forms over some international cities during the winter has been found to be associated with negative health outcomes and high surface air pollution levels. Previous research has demonstrated a well-established link between the structure of the atmospheric boundary layer (ABL) and surface air quality; however, the degree to which the structure of the ABL influences for formation of local-</span></span><span><span>scale</span></span><span><span> brown haze is unknown. Using continuous ceilometer data covering seven consecutive winters, we investigate the influence of the structure of the ABL in relation to surface air pollution and brown haze formation over an urban area of complex coastal terrain in the Southern Hemisphere city of Auckland, New Zealand. Our results suggest the depth and evolution of the ABL has a strong influence on severe brown haze formation. When days with severe brown haze are compared with those when brown haze is expected but not observed (based on favorable meteorology and high surface air pollution levels), days with severe brown haze are found to coincide with significantly shallower daytime convective boundary layers (~ 48% lower), and the nights preceding brown haze formation are found to have significantly shallower nocturnal boundary layers (~ 28% lower). On severe brown haze days the growth rate during the morning transition phase from a nocturnal boundary layer to a convective daytime boundary layer is found to be significantly reduced (70 m h</span></span><sup><span><span>-1</span></span></sup><span><span>) compared to days on which brown haze is expected but not observed (170 m h</span></span><sup><span><span>-1</span></span></sup><span><span>). Compared with moderate brown haze, severe brown haze conditions are found to be associated with a significantly higher proportion of days with a distinct residual layer present in the ceilometer profiles, suggesting the entrainment of residual layer pollutants may contribute to the severity of the haze. This study illustrates the complex interaction between the ABL structure, air pollution, and the presence of brown haze, and demonstrates the utility of a ceilometer instrument in understanding and predicting the occurrence of brown haze events. </span></span></p>


2019 ◽  
Author(s):  
Yu Shi ◽  
Fei Hu ◽  
Guangqiang Fan ◽  
Zhe Zhang

Abstract. The study and control of air pollution need to detect the structure of atmospheric boundary layer (ABL) in order to understand the mechanism of interaction between atmospheric boundary layer and air pollution. However, when extreme pollution occurs, the detection of atmospheric boundary layer structure is very scarce. Beijing, the capital of China, has experienced a severe haze pollution in December 2016. The city issued its first red air pollution warning of this year (the highest PM2.5 concentration was later monitored to exceed 450 μg m−3). In this paper, the vertical profiles of wind, temperature, humidity and extinction coefficient (reflecting aerosol concentration), as well as ABL heights and turbulence quantities under heavy haze pollution are analyzed, with collected data from Lidar, wind profile radar (WPR), radiosonde, 325-meter meteorological tower (equipped with 7-layer supersonic anemometer and 15-layer low frequency wind, temperature and humidity sensors) and some other ground observations. ABL heights obtained by three different methods based on Lidar extinction coefficient data (Hc) are compared with the heights calculated from radiosonde temperature data (Hθ) and from WPR wind speed data (Hu). The results show that increase of water vapor has greatly promoted the hygroscopic growth of aerosols, the corresponding extinction coefficients also increased significantly. The PBL heights Hθ and Hu of heavy haze pollution day were generally lower than those of clean day, but Hc increased. Turbulent activities were great inhibited during haze pollution, time changes of both friction velocity (u*) and turbulent kinetic energy (TKE) have obvious inverse correlation with that of PM2.5. The results of this paper could provide some reference for the parameterization of the boundary layer height and turbulent diffusion process in the numerical model of severe air pollution.


2010 ◽  
Vol 10 (2) ◽  
pp. 341-364 ◽  
Author(s):  
A. Jeričević ◽  
L. Kraljević ◽  
B. Grisogono ◽  
H. Fagerli ◽  
Ž. Večenaj

Abstract. This paper introduces two changes of the turbulence parameterization for the EMEP (European Monitoring and Evaluation Programme) Eulerian air pollution model: the replacement of the Blackadar in stable and O'Brien in unstable turbulence formulations with an analytical vertical diffusion profile (K(z)) called Grisogono, and a different mixing height determination, based on a bulk Richardson number formulation (RiB). The operational or standard (STD) and proposed new parameterization for eddy diffusivity have been validated in all stability conditions against the observed daily surface nitrogen dioxide (NO2), sulphur dioxide (SO2) and sulphate (SO42−) concentrations at different EMEP stations during the year 2001. A moderate improvement in the correlation coefficient and bias for NO2 and SO2 and a slight improvement for sulphate is found for the most of the analyzed stations with the Grisogono K(z) scheme, which is recommended for further application due to its scientific and technical advantages. The newly extended approach for the mechanical eddy diffusivity is applied to the Large Eddy Simulation data focusing at the bulk properties of the neutral and stable atmospheric boundary layer. A summary and extension of the previous work on the empirical coefficients in neutral and stable conditions is provided with the recommendations to the further model development. Special emphasis is given to the representation of the ABL in order to capture the vertical transport and dispersion of the atmospheric air pollution. Two different schemes for the ABL height determination are evaluated against the radiosounding data in January and July 2001, and against the data from the Cabauw tower, the Netherlands, for the same year. The validation of the ABL parameterizations has shown that the EMEP model is able to reproduce spatial and temporal mixing height variability. Improvements are identified especially in stable conditions with the new ABL height scheme based on the RiB number.


Sign in / Sign up

Export Citation Format

Share Document