Measurement of transmitted wavefront error and homogeneity with a low-coherence interferometer

2021 ◽  
Author(s):  
Klaus Freischlad
1991 ◽  
Vol 138 (6) ◽  
pp. 393
Author(s):  
B.T. Meggitt ◽  
W.J.O. Boyle ◽  
K.T.V. Grattan ◽  
A.E. Baruch ◽  
A.W. Palmer

2006 ◽  
Vol 133 ◽  
pp. 645-648 ◽  
Author(s):  
B. E. Kruschwitz ◽  
R. Jungquist ◽  
J. Qiao ◽  
S. Abbey ◽  
S. E. Dean ◽  
...  

Author(s):  
Y. Lu ◽  
E. Ramsay ◽  
C. Stockbridge ◽  
F. H. Koklu ◽  
A. Yurt ◽  
...  

Abstract We present a method for correcting spherical aberrations in solid immersion microscopy through the use of a deformable mirror. Aberrations in solid immersion imaging for failure analysis can be induced through off-axis imaging, errors in lens fabrication or mismatch of design and substrate wafer thickness. RMS wavefront error correction of 30% is demonstrated in the case of substrate wafer thickness error.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Monika Kosowska ◽  
Paweł Jakóbczyk ◽  
Michał Rycewicz ◽  
Alex Vitkin ◽  
Małgorzata Szczerska

AbstractWe present an advanced multimodality characterization platform for simultaneous optical and electrochemical measurements of ferrocyanides. Specifically, we combined a fiber-optic Fabry–Perot interferometer with a three-electrode electrochemical setup to demonstrate a proof-of-principle of this hybrid characterization approach, and obtained feasibility data in its monitoring of electrochemical reactions in a boron-doped diamond film deposited on a silica substrate. The film plays the dual role of being the working electrode in the electrochemical reaction, as well as affording the reflectivity to enable the optical interferometry measurements. Optical responses during the redox reactions of the electrochemical process are presented. This work proves that simultaneous opto-electrochemical measurements of liquids are possible.


Sensors ◽  
2014 ◽  
Vol 14 (4) ◽  
pp. 6965-6976 ◽  
Author(s):  
Małgorzata Jędrzejewska-Szczerska

Photonics ◽  
2021 ◽  
Vol 8 (7) ◽  
pp. 245
Author(s):  
Michele Norgia ◽  
Alessandro Pesatori

Real-time measurement of plastic film thickness during production is extremely important to guarantee planarity of the final film. Standard techniques are based on capacitive measurements, in close contact with the film. These techniques require continuous calibration and temperature compensation, while their contact can damage the film. Different optical contactless techniques are described in literature, but none has found application to real production, due to the strong vibration of the films. We propose a new structure of low-coherence fiber interferometer able to measure blown film thickness during productions. The novel fiber-optic setup is a cross between an autocorrelator and a white light interferometer, taking the advantages of both approaches.


Sign in / Sign up

Export Citation Format

Share Document