A satellite photon-counting laser altimeter calibration algorithm using CCRs and indirect adjustment

2021 ◽  
Author(s):  
Yalei Guo ◽  
Huan Xie ◽  
Qi Xu ◽  
Xiaoshuai Liu ◽  
Xu Wang ◽  
...  
2021 ◽  
Vol 87 (4) ◽  
pp. 237-248
Author(s):  
Nahed Osama ◽  
Bisheng Yang ◽  
Yue Ma ◽  
Mohamed Freeshah

The ICE, Cloud and land Elevation Satellite-2 (ICES at-2) can provide new measurements of the Earth's elevations through photon-counting technology. Most research has focused on extracting the ground and the canopy photons in vegetated areas. Yet the extraction of the ground photons from urban areas, where the vegetation is mixed with artificial constructions, has not been fully investigated. This article proposes a new method to estimate the ground surface elevations in urban areas. The ICES at-2 signal photons were detected by the improved Density-Based Spatial Clustering of Applications with Noise algorithm and the Advanced Topographic Laser Altimeter System algorithm. The Advanced Land Observing Satellite-1 PALSAR –derived digital surface model has been utilized to separate the terrain surface from the ICES at-2 data. A set of ground-truth data was used to evaluate the accuracy of these two methods, and the achieved accuracy was up to 2.7 cm, which makes our method effective and accurate in determining the ground elevation in urban scenes.


Author(s):  
S.G. Moon ◽  
S. Hannemann ◽  
M. Collon ◽  
K. Wielinga ◽  
E. Kroesbergen ◽  
...  

2019 ◽  
Vol 233 ◽  
pp. 111352 ◽  
Author(s):  
Benjamin Smith ◽  
Helen A. Fricker ◽  
Nicholas Holschuh ◽  
Alex S. Gardner ◽  
Susheel Adusumilli ◽  
...  

2019 ◽  
Vol 11 (14) ◽  
pp. 1634 ◽  
Author(s):  
Christopher E. Parrish ◽  
Lori A. Magruder ◽  
Amy L. Neuenschwander ◽  
Nicholas Forfinski-Sarkozi ◽  
Michael Alonzo ◽  
...  

NASA’s Ice, Cloud, and Land Elevation Satellite-2 (ICESat-2) was launched in September, 2018. The satellite carries a single instrument, ATLAS (Advanced Topographic Laser Altimeter System), a green wavelength, photon-counting lidar, enabling global measurement and monitoring of elevation with a primary focus on the cryosphere. Although bathymetric mapping was not one of the design goals for ATLAS, pre-launch work by our research team showed the potential to map bathymetry with ICESat-2, using data from MABEL (Multiple Altimeter Beam Experimental Lidar), NASA’s high-altitude airborne ATLAS emulator, and adapting the laser-radar equation for ATLAS specific parameters. However, many of the sensor variables were only approximations, which limited a full assessment of the bathymetric mapping capabilities of ICESat-2 during pre-launch studies. Following the successful launch, preliminary analyses of the geolocated photon returns have been conducted for a number of coastal sites, revealing several salient examples of seafloor detection in water depths of up to ~40 m. The geolocated seafloor photon returns cannot be taken as bathymetric measurements, however, since the algorithm used to generate them is not designed to account for the refraction that occurs at the air–water interface or the corresponding change in the speed of light in the water column. This paper presents the first early on-orbit validation of ICESat-2 bathymetry and quantification of the bathymetric mapping performance of ATLAS using data acquired over St. Thomas, U.S. Virgin Islands. A refraction correction, developed and tested in this work, is applied, after which the ICESat-2 bathymetry is compared against high-accuracy airborne topo-bathymetric lidar reference data collected by the U.S. Geological Survey (USGS) and the National Oceanic and Atmospheric Administration (NOAA). The results show agreement to within 0.43—0.60 m root mean square error (RMSE) over 1 m grid resolution for these early on-orbit data. Refraction-corrected bottom return photons are then inspected for four coastal locations around the globe in relation to Visible Infrared Imaging Radiometer Suite (VIIRS) Kd(490) data to empirically determine the maximum depth mapping capability of ATLAS as a function of water clarity. It is demonstrated that ATLAS has a maximum depth mapping capability of nearly 1 Secchi in depth for water depths up to 38 m and Kd(490) in the range of 0.05–0.12 m−1. Collectively, these results indicate the great potential for bathymetric mapping with ICESat-2, offering a promising new tool to assist in filling the global void in nearshore bathymetry.


2015 ◽  
Vol 61 (225) ◽  
pp. 17-28 ◽  
Author(s):  
Duncan A. Young ◽  
Laura E. Lindzey ◽  
Donald D. Blankenship ◽  
Jamin S. Greenbaum ◽  
Alvaro Garcia De Gorordo ◽  
...  

AbstractSatellite altimetric time series allow high-precision monitoring of ice-sheet mass balance. Understanding elevation changes in these regions is important because outlet glaciers along ice-sheet margins are critical in controlling flow of inland ice. Here we discuss a new airborne altimetry dataset collected as part of the ICECAP (International Collaborative Exploration of the Cryosphere by Airborne Profiling) project over East Antarctica. Using the ALAMO (Airborne Laser Altimeter with Mapping Optics) system of a scanning photon-counting lidar combined with a laser altimeter, we extend the 2003–09 surface elevation record of NASA’s ICESat satellite, by determining cross-track slope and thus independently correcting for ICESat’s cross-track pointing errors. In areas of high slope, cross-track errors result in measured elevation change that combines surface slope and the actual Δz/Δt signal. Slope corrections are particularly important in coastal ice streams, which often exhibit both rapidly changing elevations and high surface slopes. As a test case (assuming that surface slopes do not change significantly) we observe a lack of ice dynamic change at Cook Ice Shelf, while significant thinning occurred at Totten and Denman Glaciers during 2003–09.


2021 ◽  
Vol 87 (11) ◽  
pp. 821-830
Author(s):  
Binbin Li ◽  
Huan Xie ◽  
Shijie Liu ◽  
Xiaohua Tong ◽  
Hong Tang ◽  
...  

Due to its high ranging accuracy, spaceborne laser altimetry technology can improve the accuracy of satellite stereo mapping without ground control points. In the past, full-waveform ICE, CLOUD, and Land Elevation Satellite (ICESat) laser altimeter data have been used as one of the main data sources for global elevation control. As a second-generation satellite, ICESat-2 is equipped with an altimeter using photon counting mode. This can further improve the application capability for stereo mapping because of the six laser beams with high along-track repetition frequency, which can provide more detailed ground contour descriptions. Previous studies have addressed how to extract high-accuracy elevation control points from ICESat data. However, these methods cannot be directly applied to ICESat-2 data because of the different modes of the laser altimeters. Therefore, in this paper, we propose a method using comprehensive evaluation labels that can extract high-accuracy elevation control points that meet the different level elevation accuracy requirements for large scale mapping from the ICESat-2 land-vegetation along-track product. The method was verified using two airborne lidar data sets. In flat, hilly, and mountainous areas, by using our method to extract the terrain elevation, the root-mean-square error of elevation control points decrease from 1.249–2.094 m, 2.237–3.225 m, and 2.791–4.822 m to 0.262–0.429 m, 0.484–0.596 m, and 0.611–1.003 m, respectively. The results show that the extraction elevations meet the required accuracy for large scale mapping.


Sign in / Sign up

Export Citation Format

Share Document