Label-free cell analysis and fast bacteria detection using Raman-trapping-microscopy

2021 ◽  
Author(s):  
Karin Schütze ◽  
Hesham Yosef ◽  
Juliane Strietz ◽  
Susana Minguet ◽  
Romy Kronstein-Wiedemann ◽  
...  
APL Photonics ◽  
2020 ◽  
Vol 5 (12) ◽  
pp. 126105
Author(s):  
Rui Tang ◽  
Zunming Zhang ◽  
Xinyu Chen ◽  
Lauren Waller ◽  
Alex Ce Zhang ◽  
...  

2021 ◽  
Vol 270 ◽  
pp. 113872
Author(s):  
Tao Hou ◽  
Fangfang Xu ◽  
Xingrong Peng ◽  
Han Zhou ◽  
Xiuli Zhang ◽  
...  

RSC Advances ◽  
2016 ◽  
Vol 6 (55) ◽  
pp. 50027-50033 ◽  
Author(s):  
S. Bakhtiaridoost ◽  
H. Habibiyan ◽  
S. Muhammadnejad ◽  
M. Haddadi ◽  
H. Ghafoorifard ◽  
...  

Wavelet transform and SVM applied to Raman spectra makes a powerful and accurate tool for identification of rare cells such as CTCs.


Author(s):  
Bozhen Zhang ◽  
Canran Wang ◽  
Yingjie Du ◽  
Rebecca Paxton ◽  
Ximin He

Label-free cell sorting devices are of great significance for biomedical research and clinical therapeutics. However, current platforms for label-free cell sorting cannot achieve continuity and selectivity simultaneously, resulting in complex...


Proceedings ◽  
2018 ◽  
Vol 2 (13) ◽  
pp. 866 ◽  
Author(s):  
Shinta Mariana ◽  
Gregor Scholz ◽  
Feng Yu ◽  
Agus Budi Dharmawan ◽  
Iqbal Syamsu ◽  
...  

Pinhole‐shaped light‐emitting diode (LED) arrays with dimension ranging from 100 μm down to 5 μm have been developed as point illumination sources. The proposed microLED arrays, which are based on gallium nitride (GaN) technology and emitting in the blue spectral region (λ = 465 nm), are integrated into a compact lensless holographic microscope for a non‐invasive, label‐free cell sensing and imaging. From the experimental results using single pinhole LEDs having a diameter of 90 μm, the reconstructed images display better resolution and enhanced image quality compared to those captured using a commercial surface‐mount device (SMD)‐based LED.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Giuseppina Bozzuto ◽  
Giuseppe D’Avenio ◽  
Maria Condello ◽  
Simona Sennato ◽  
Ezio Battaglione ◽  
...  

Abstract Background There is a huge body of literature data on ZnOnanoparticles (ZnO NPs) toxicity. However, the reported results are seen to be increasingly discrepant, and deep comprehension of the ZnO NPs behaviour in relation to the different experimental conditions is still lacking. A recent literature overview emphasizes the screening of the ZnO NPs toxicity with more than one assay, checking the experimental reproducibility also versus time, which is a key factor for the robustness of the results. In this paper we compared high-throughput real-time measurements through Electric Cell-substrate Impedance-Sensing (ECIS®) with endpoint measurements of multiple independent assays. Results ECIS-measurements were compared with traditional cytotoxicity tests such as MTT, Neutral red, Trypan blue, and cloning efficiency assays. ECIS could follow the cell behavior continuously and noninvasively for days, so that certain long-term characteristics of cell proliferation under treatment with ZnO NPs were accessible. This was particularly important in the case of pro-mitogenic activity exerted by low-dose ZnO NPs, an effect not revealed by endpoint independent assays. This result opens new worrisome questions about the potential mitogenic activity exerted by ZnO NPs, or more generally by NPs, on transformed cells. Of importance, impedance curve trends (morphology) allowed to discriminate between different cell death mechanisms (apoptosis vs autophagy) in the absence of specific reagents, as confirmed by cell structural and functional studies by high-resolution microscopy. This could be advantageous in terms of costs and time spent. ZnO NPs-exposed A549 cells showed an unusual pattern of actin and tubulin distribution which might trigger mitotic aberrations leading to genomic instability. Conclusions ZnO NPs toxicity can be determined not only by the intrinsic NPs characteristics, but also by the external conditions like the experimental setting, and this could account for discrepant data from different assays. ECIS has the potential to recapitulate the needs required in the evaluation of nanomaterials by contributing to the reliability of cytotoxicity tests. Moreover, it can overcome some false results and discrepancies in the results obtained by endpoint measurements. Finally, we strongly recommend the comparison of cytotoxicity tests (ECIS, MTT, Trypan Blue, Cloning efficiency) with the ultrastructural cell pathology studies. Graphic Abstract


Sign in / Sign up

Export Citation Format

Share Document