scholarly journals Pinhole microLED Array as Point Source Illumination for Miniaturized Lensless Cell Monitoring Systems

Proceedings ◽  
2018 ◽  
Vol 2 (13) ◽  
pp. 866 ◽  
Author(s):  
Shinta Mariana ◽  
Gregor Scholz ◽  
Feng Yu ◽  
Agus Budi Dharmawan ◽  
Iqbal Syamsu ◽  
...  

Pinhole‐shaped light‐emitting diode (LED) arrays with dimension ranging from 100 μm down to 5 μm have been developed as point illumination sources. The proposed microLED arrays, which are based on gallium nitride (GaN) technology and emitting in the blue spectral region (λ = 465 nm), are integrated into a compact lensless holographic microscope for a non‐invasive, label‐free cell sensing and imaging. From the experimental results using single pinhole LEDs having a diameter of 90 μm, the reconstructed images display better resolution and enhanced image quality compared to those captured using a commercial surface‐mount device (SMD)‐based LED.

Author(s):  
Shida Tan ◽  
Richard H. Livengood ◽  
Dane Scott ◽  
Roy Hallstein ◽  
Pat Pardy ◽  
...  

Abstract High resolution optical imaging is critical in assisting backside circuit edit (CE) and optical probing navigation. In this paper, we demonstrated improved optical image quality using VIS-NIR narrow band light emitting diode (LED) illumination in various FIB and optical probing platforms. The proof of concept was demonstrated with both common non-contact air gap lenses and solid immersion lenses (SIL).


2018 ◽  
Vol 4 (11) ◽  
pp. 133
Author(s):  
HyungTae Kim ◽  
EungJoo Ha ◽  
KyungChan Jin ◽  
ByungWook Kim

A system for inspecting flat panel displays (FPDs) acquires scanning images using multiline charge-coupled device (CCD) cameras and industrial machine vision. Optical filters are currently installed in front of these inspection systems to obtain high-quality images. However, the combination of optical filters required is determined manually and by using empirical methods; this is referred to as passive color control. In this study, active color control is proposed for inspecting FPDs. This inspection scheme requires the scanning of images, which is achieved using a mixed color light source and a mixing algorithm. The light source utilizes high-power light emitting diodes (LEDs) of multiple colors and a communication port to dim their level. Mixed light illuminates an active-matrix organic light-emitting diode (AMOLED) panel after passing through a beam expander and after being shaped into a line beam. The image quality is then evaluated using the Tenenbaum gradient after intensity calibration of the scanning images. The dimming levels are determined using the simplex search method which maximizes the image quality. The color of the light was varied after every scan of an AMOLED panel, and the variation was iterated until the image quality approached a local maximization. The number of scans performed was less than 225, while the number of dimming level combinations was 20484. The proposed method can reduce manual tasks in setting-up inspection machines, and hence is useful for the inspection machines in FPD processes.


Endoscopy ◽  
2016 ◽  
Vol 48 (10) ◽  
pp. 934-938 ◽  
Author(s):  
Sho Sasaki ◽  
Jun Nishikawa ◽  
Hideo Yanai ◽  
Munetaka Nakamura ◽  
Junichi Nishimura ◽  
...  

2020 ◽  
Vol 11 ◽  
Author(s):  
Mingxian Chen ◽  
Songyun Wang ◽  
Xuping Li ◽  
Lilei Yu ◽  
Hui Yang ◽  
...  

Autonomic imbalance plays a crucial role in the genesis and maintenance of cardiac disorders. Approaches to maintain sympatho-vagal balance in heart diseases have gained great interest in recent years. Emerging therapies However, certain types of emerging therapies including direct electrical stimulation and nerve denervation require invasive implantation of a generator and a bipolar electrode subcutaneously or result in autonomic nervous system (ANS) damage, inevitably increasing the risk of complications. More recently, non-invasive neuromodulation approaches have received great interest in ANS modulation. Non-invasive approaches have opened new fields in the treatment of cardiovascular diseases. Herein, we will review the protective roles of non-invasive neuromodulation techniques in heart diseases, including transcutaneous auricular vagus nerve stimulation, electromagnetic field stimulation, ultrasound stimulation, autonomic modulation in optogenetics, and light-emitting diode and transcutaneous cervical vagus nerve stimulation (gammaCore).


2016 ◽  
Vol 1 (1) ◽  
Author(s):  
Joachim Wiest

Label-free monitoring of living cells is used in various applications such as drug development, toxicology, regenerative medicine or environmental monitoring. The most prominent methods for monitoring the extracellular acidification, oxygen consumption, electrophysiological activity and morphological changes of living cells are described. Furthermore, the intelligent mobile lab (IMOLA) – a computer controlled system integrating cell monitoring and automated cell cultivation – is described as an example of a cell-based system for microphysiometry. Results from experiments in the field of environmental monitoring using algae are presented. An outlook toward the development of an organ-on-chip technology is given.


2019 ◽  
Vol 19 (10) ◽  
pp. 6187-6191 ◽  
Author(s):  
Seung Ho Lee ◽  
Min Seok Kim ◽  
Ok-Kyun Kim ◽  
Hyung-Hwan Baik ◽  
Ji-Hye Kim

2011 ◽  
Vol 480-481 ◽  
pp. 1373-1377 ◽  
Author(s):  
Xiao Ming Zhao ◽  
Xiao Yuan Zhou ◽  
Sheng Chun Yuan

This paper compares and analyzes various common sub-pixels layouts in the outdoor LED (Light Emitting Diode) display industry. According to the basic principles of chromatics and the instructions about central wavelength of LED lamps, proposed that the ratio (2:1:1) of the red, green, blue lamps in one display unit of the 4-subpixels arrangement should be changed to 1:2:1 to improve the clarity of the screen. Besides, to solve the chaotic situation of relating technologies, the paper proposed that optimizing technologies of image quality around LED screen can be classified into two groups based on sub-pixels layouts---centralizing and dispersing evenly.


Author(s):  
Yao Alvarez Kossonou ◽  
Jérémie Zoueu

In this paper, we present the progress made in developing multimodal and multispectral light microscopy for label-free malaria diagnosis. Our previously developed light emitting diode (LED) illumination system was replaced by laser diodes as light sources in order to narrow the spectral bands and improve the effectiveness of the contrast function for infected blood cell detection. The acquisition system is now equipped with an algorithm for automatic field scanning and best in-focus determination. We demonstrate the potential of this platform to provide multiple investigation modalities like transmission, reflection, scattering, fluorescence, excitation, emission and polarisation. The application of this platform on malaria-infected samples has shown the effectiveness of such a system in label-free and all-optical malaria detection by allowing the possibility of using a different type of imaging set-up for the samples analysed. Also, fewer illumination sources are used to characterise malaria-infected red blood cells compared to our previous works on malaria detection using LEDs illumination sources.


Sign in / Sign up

Export Citation Format

Share Document