Low-cost chromatic confocal endomicroscope for the diagnosis of cervical precancer

2021 ◽  
Author(s):  
Nachiket Kulkarni ◽  
Andrew Masciola ◽  
Abhinav Nishant ◽  
Kyungjo Kim ◽  
Arthur Gmitro ◽  
...  
Keyword(s):  
Low Cost ◽  
2012 ◽  
Vol 5 (11) ◽  
pp. 1273-1279 ◽  
Author(s):  
Mark C. Pierce ◽  
YaoYao Guan ◽  
Mary Kate Quinn ◽  
Xun Zhang ◽  
Wen-Hua Zhang ◽  
...  

Diagnostics ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 716
Author(s):  
Roser Viñals ◽  
Pierre Vassilakos ◽  
Mohammad Saeed Rad ◽  
Manuela Undurraga ◽  
Patrick Petignat ◽  
...  

Cervical cancer remains a major public health concern in developing countries due to financial and human resource constraints. Visual inspection with acetic acid (VIA) of the cervix was widely promoted and routinely used as a low-cost primary screening test in low- and middle-income countries. It can be performed by a variety of health workers and the result is immediate. VIA provides a transient whitening effect which appears and disappears differently in precancerous and cancerous lesions, as compared to benign conditions. Colposcopes are often used during VIA to magnify the view of the cervix and allow clinicians to visually assess it. However, this assessment is generally subjective and unreliable even for experienced clinicians. Computer-aided techniques may improve the accuracy of VIA diagnosis and be an important determinant in the promotion of cervical cancer screening. This work proposes a smartphone-based solution that automatically detects cervical precancer from the dynamic features extracted from videos taken during VIA. The proposed solution achieves a sensitivity and specificity of 0.9 and 0.87 respectively, and could be a solution for screening in countries that suffer from the lack of expensive tools such as colposcopes and well-trained clinicians.


2017 ◽  
Vol 3 (4) ◽  
pp. 400-408 ◽  
Author(s):  
Mauricio Maza ◽  
Celina M. Schocken ◽  
Katherine L. Bergman ◽  
Thomas C. Randall ◽  
Miriam L. Cremer

Cervical cancer is the fourth leading cause of cancer-related death in women worldwide, with 90% of cases occurring in low- and middle-income countries (LMICs). There has been a global effort to increase access to affordable screening in these settings; however, a corresponding increase in availability of effective and inexpensive treatment modalities for ablating or excising precancerous lesions is also needed to decrease mortality. This article reviews the current landscape of available and developing technologies for treatment of cervical precancer in LMICs. At present, the standard treatment of most precancerous lesions in LMICs is gas-based cryotherapy. This low-cost, effective technology is an expedient treatment in many areas; however, obtaining and transporting gas is often difficult, and unwieldy gas tanks are not conducive to mobile health campaigns. There are several promising ablative technologies in development that are gasless or require less gas than conventional cryotherapy. Although further evaluation of the efficacy and cost-effectiveness is needed, several of these technologies are safe and can now be implemented in LMICs. Nonsurgical therapies, such as therapeutic vaccines, antivirals, and topical applications, are also promising, but most remain in early-stage trials. The establishment of evidence-based standardized protocols for available treatments and the development and introduction of novel technologies are necessary steps in overcoming barriers to treatment in LMICs and decreasing the global burden of cervical cancer. Guidance from WHO on emerging treatment technologies is also needed.


2019 ◽  
Vol 154 (3) ◽  
pp. 558-564 ◽  
Author(s):  
Sonia G. Parra ◽  
Ana M. Rodriguez ◽  
Katelin D. Cherry ◽  
Richard A. Schwarz ◽  
Rose M. Gowen ◽  
...  

2019 ◽  
Vol 11 (1) ◽  
pp. 269 ◽  
Author(s):  
Yubo Tang ◽  
Alex Kortum ◽  
Sonia G. Parra ◽  
Imran Vohra ◽  
Andrea Milbourne ◽  
...  

Author(s):  
Y. L. Chen ◽  
S. Fujlshiro

Metastable beta titanium alloys have been known to have numerous advantages such as cold formability, high strength, good fracture resistance, deep hardenability, and cost effectiveness. Very high strength is obtainable by precipitation of the hexagonal alpha phase in a bcc beta matrix in these alloys. Precipitation hardening in the metastable beta alloys may also result from the formation of transition phases such as omega phase. Ti-15-3 (Ti-15V- 3Cr-3Al-3Sn) has been developed recently by TIMET and USAF for low cost sheet metal applications. The purpose of the present study was to examine the aging characteristics in this alloy.The composition of the as-received material is: 14.7 V, 3.14 Cr, 3.05 Al, 2.26 Sn, and 0.145 Fe. The beta transus temperature as determined by optical metallographic method was about 770°C. Specimen coupons were prepared from a mill-annealed 1.2 mm thick sheet, and solution treated at 827°C for 2 hr in argon, then water quenched. Aging was also done in argon at temperatures ranging from 316 to 616°C for various times.


Author(s):  
J. D. Muzzy ◽  
R. D. Hester ◽  
J. L. Hubbard

Polyethylene is one of the most important plastics produced today because of its good physical properties, ease of fabrication and low cost. Studies to improve the properties of polyethylene are leading to an understanding of its crystalline morphology. Polyethylene crystallized by evaporation from dilute solutions consists of thin crystals called lamellae. The polyethylene molecules are parallel to the thickness of the lamellae and are folded since the thickness of the lamellae is much less than the molecular length. This lamellar texture persists in less perfect form in polyethylene crystallized from the melt.Morphological studies of melt crystallized polyethylene have been limited due to the difficulty of isolating the microstructure from the bulk specimen without destroying or deforming it.


Author(s):  
J. Temple Black

In ultramicrotomy, the two basic tool materials are glass and diamond. Glass because of its low cost and ease of manufacture of the knife itself is still widely used despite the superiority of diamond knives in many applications. Both kinds of knives produce plastic deformation in the microtomed section due to the nature of the cutting process and microscopic chips in the edge of the knife. Because glass has no well defined slip planes in its structure (it's an amorphous material), it is very strong and essentially never fails in compression. However, surface flaws produce stress concentrations which reduce the strength of glass to 10,000 to 20,000 psi from its theoretical or flaw free values of 1 to 2 million psi. While the microchips in the edge of the glass or diamond knife are generally too small to be observed in the SEM, the second common type of defect can be identified. This is the striations (also termed the check marks or feathers) which are always present over the entire edge of a glass knife regardless of whether or not they are visable under optical inspection. These steps in the cutting edge can be observed in the SEM by proper preparation of carefully broken knives and orientation of the knife, with respect to the scanning beam.


Author(s):  
H. O. Colijn

Many labs today wish to transfer data between their EDS systems and their existing PCs and minicomputers. Our lab has implemented SpectraPlot, a low- cost PC-based system to allow offline examination and plotting of spectra. We adopted this system in order to make more efficient use of our microscopes and EDS consoles, to provide hardcopy output for an older EDS system, and to allow students to access their data after leaving the university.As shown in Fig. 1, we have three EDS systems (one of which is located in another building) which can store data on 8 inch RT-11 floppy disks. We transfer data from these systems to a DEC MINC computer using “SneakerNet”, which consists of putting on a pair of sneakers and running down the hall. We then use the Hermit file transfer program to download the data files with error checking from the MINC to the PC.


Author(s):  
T. P. Nolan

Thin film magnetic media are being used as low cost, high density forms of information storage. The development of this technology requires the study, at the sub-micron level, of morphological, crystallographic, and magnetic properties, throughout the depth of the deposited films. As the microstructure becomes increasingly fine, widi grain sizes approaching 100Å, the unique characterization capabilities of transmission electron microscopy (TEM) have become indispensable to the analysis of such thin film magnetic media.Films were deposited at 225°C, on two NiP plated Al substrates, one polished, and one circumferentially textured with a mean roughness of 55Å. Three layers, a 750Å chromium underlayer, a 600Å layer of magnetic alloy of composition Co84Cr14Ta2, and a 300Å amorphous carbon overcoat were then sputter deposited using a dc magnetron system at a power of 1kW, in a chamber evacuated below 10-6 torr and filled to 12μm Ar pressure. The textured medium is presently used in industry owing to its high coercivity, Hc, and relatively low noise. One important feature is that the coercivity in the circumferential read/write direction is significandy higher than that in the radial direction.


Sign in / Sign up

Export Citation Format

Share Document