High-resolution in-vivo micro-CT scanner for small animals

Author(s):  
Alexander Sasov ◽  
Daniel Dewaele
2015 ◽  
Vol 5 (1) ◽  
Author(s):  
Philipp S. Lienemann ◽  
Stéphanie Metzger ◽  
Anna-Sofia Kiveliö ◽  
Alain Blanc ◽  
Panagiota Papageorgiou ◽  
...  

Abstract Over the last decades, great strides were made in the development of novel implants for the treatment of bone defects. The increasing versatility and complexity of these implant designs request for concurrent advances in means to assess in vivo the course of induced bone formation in preclinical models. Since its discovery, micro-computed tomography (micro-CT) has excelled as powerful high-resolution technique for non-invasive assessment of newly formed bone tissue. However, micro-CT fails to provide spatiotemporal information on biological processes ongoing during bone regeneration. Conversely, due to the versatile applicability and cost-effectiveness, single photon emission computed tomography (SPECT) would be an ideal technique for assessing such biological processes with high sensitivity and for nuclear imaging comparably high resolution (<1 mm). Herein, we employ modular designed poly(ethylene glycol)-based hydrogels that release bone morphogenetic protein to guide the healing of critical sized calvarial bone defects. By combined in vivo longitudinal multi-pinhole SPECT and micro-CT evaluations we determine the spatiotemporal course of bone formation and remodeling within this synthetic hydrogel implant. End point evaluations by high resolution micro-CT and histological evaluation confirm the value of this approach to follow and optimize bone-inducing biomaterials.


2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Hirofumi Fujii ◽  
Masayuki Yamaguchi ◽  
Kazumasa Inoue ◽  
Yasuko Mutou ◽  
Masashi Ueda ◽  
...  

Purpose. We aimed to clearly visualize heterogeneous distribution of hypoxia-inducible factor 1α(HIF) activity in tumor tissuesin vivo.Methods. We synthesized of125I-IPOS, a125I labeled chimeric protein probe, that would visualize HIF activity. The biodistribution of125I-IPOS in FM3A tumor-bearing mice was evaluated. Then, the intratumoral localization of this probe was observed by autoradiography, and it was compared with histopathological findings. The distribution of125I-IPOS in tumors was imaged by a small animal SPECT/CT scanner. The obtainedin vivoSPECT-CT fusion images were compared withex vivoimages of excised tumors. Fusion imaging with MRI was also examined.Results.125I-IPOS well accumulated in FM3A tumors. The intratumoral distribution of125I-IPOS by autoradiography was quite heterogeneous, and it partially overlapped with that of pimonidazole. High-resolution SPECT-CT fusion images successfully demonstrated the heterogeneity of125I-IPOS distribution inside tumors. SPECT-MRI fusion images could give more detailed information about the intratumoral distribution of125I-IPOS.Conclusion. High-resolution SPECT images successfully demonstrated heterogeneous intratumoral distribution of125I-IPOS. SPECT-CT fusion images, more favorably SPECT-MRI fusion images, would be useful to understand the features of heterogeneous intratumoral expression of HIF activityin vivo.


2012 ◽  
Author(s):  
B. Pauwels ◽  
P. Bruyndonckx ◽  
X. Liu ◽  
A. Tapfer ◽  
A. Velroyen ◽  
...  

2000 ◽  
Vol 123 (2) ◽  
pp. 176-183 ◽  
Author(s):  
W. Pistoia ◽  
B. van Rietbergen ◽  
A. Laib ◽  
P. Ru¨egsegger

Micro-finite element (μFE) models based on high-resolution images have enabled the calculation of elastic properties of trabecular bone in vitro. Recently, techniques have been developed to image trabecular bone structure in vivo, albeit at a lesser resolution. The present work studies the usefulness of such in-vivo images for μFE analyses, by comparing their μFE results to those of models based on high-resolution micro-CT (μCT) images. Fifteen specimens obtained from human femoral heads were imaged first with a 3D-pQCT scanner at 165 μm resolution and a second time with a μCT scanner at 56 μm resolution. A third set of images with a resolution of 165 μm was created by downscaling the μCT measurements. The μFE models were created directly from these images. Orthotropic elastic properties and the average tissue von Mises stress of the specimens were calculated from six FE-analyses per specimen. The results of the 165 μm models were compared to those of the 56 μm model, which was taken as the reference model. The results calculated from the pQCT-based models, correlated excellent with those calculated from the reference model for both moduli R2>0.95 and for the average tissue von Mises stress R2>0.83. Results calculated from the downscaled micro-CT models correlated even better with those of the reference models (R2>0.99 for the moduli and R2>0.96 for the average von Mises stress). In the case of the 3D-pQCT based models, however, the slopes of the regression lines were less than one and had to be corrected. The prediction of the Poisson’s ratios was less accurate (R2>0.45 and R2>0.67) for the models based on 3D-pQCT and downscaled μCT images respectively). The fact that the results from the downscaled and original μCT images were nearly identical indicates that the need for a correction in the case of the 3D-pQCT measurements was not due to the voxel size of the images but due to a higher noise level and a lower contrast in these images, in combination with the application of a filtering procedure at 165 micron images. In summary: the results of μFE models based on in-vivo images of the 3D-pQCT can closely resemble those obtained from μFE models based on higher resolution μCT system.


2016 ◽  
Vol 119 (2) ◽  
pp. 129-133 ◽  
Author(s):  
Takafumi Yamano ◽  
Hitomi Higuchi ◽  
Tetsuko Ueno ◽  
Takashi Nakagawa ◽  
Tetsuo Morizono

Author(s):  
Thomas Valenzuela ◽  
Jorge Zhingre Sanchez ◽  
Mikayle Holm ◽  
Tinen Iles ◽  
Paul Iaizzo

Abstract There are few medical devices currently utilized that have not had, at the very least, a second iteration. Medical device companies continually strive to improve their product to make it the best on the market. Medical devices are often optimized by defining the size of the device, making it more efficient and/or improving the device to tissue interface. Using the capabilities of the Visible Heart® Laboratories various cardiac devices can be implanted in reanimated swine and human hearts for the assessment of the various aforementioned parameters. After the implantation of these devices and assessment in functional anatomies, specimens were perfusion-fixed and then a micro-CT scanner was utilized to take high-resolution scans of the resultant device and tissue interfaces. These scans are used to generate high-resolution (∼20 microns) 3D models of the numerous implanted devices, measurement analyses, device simulations, and the creation of virtual reality scenes. All can then be used for detailed visual analyses. These abilities to render high-resolution models will allow medical device designers to closely evaluate their designs, in order to optimize their next iterations.


Sign in / Sign up

Export Citation Format

Share Document