Using Computational Modeling Derived From Micro CT Scanning for the Post-Implant Analyses of Various Cardiac Devices

Author(s):  
Thomas Valenzuela ◽  
Jorge Zhingre Sanchez ◽  
Mikayle Holm ◽  
Tinen Iles ◽  
Paul Iaizzo

Abstract There are few medical devices currently utilized that have not had, at the very least, a second iteration. Medical device companies continually strive to improve their product to make it the best on the market. Medical devices are often optimized by defining the size of the device, making it more efficient and/or improving the device to tissue interface. Using the capabilities of the Visible Heart® Laboratories various cardiac devices can be implanted in reanimated swine and human hearts for the assessment of the various aforementioned parameters. After the implantation of these devices and assessment in functional anatomies, specimens were perfusion-fixed and then a micro-CT scanner was utilized to take high-resolution scans of the resultant device and tissue interfaces. These scans are used to generate high-resolution (∼20 microns) 3D models of the numerous implanted devices, measurement analyses, device simulations, and the creation of virtual reality scenes. All can then be used for detailed visual analyses. These abilities to render high-resolution models will allow medical device designers to closely evaluate their designs, in order to optimize their next iterations.

2021 ◽  
Author(s):  
Dominik Göldner ◽  
Fotios Alexandros Karakostis ◽  
Armando Falcucci

This protocol presents the first detailed step-by-step pipeline for the 3D scanning and post processing of large batches of lithic artefacts using a micro-computed tomography (micro-CT) scanner (i.e., a Phoenix v-tome-x S model by General Electronics MCC, Boston MA) and an Artec Space Spider scanner (Artec Inc., Luxembourg). This protocol was used to scan and analyze ca. 700 lithic artefacts from the Protoaurignacian layers at Fumane Cave in north-eastern Italy (Falcucci et al., in preparation). For this study several costly scanners and proprietary software packages were employed. Although it is not easy to find a low-budget alternative for the scanners, it is possible to use free and open-source software programs, such as 3D-Slicer (https://www.slicer.org/) or MorphoDig (https://morphomuseum.com/morphodig), to process CT data as well as MeshLab (Cignoni et al. 2008) to interact with the 3D models in general. However, if alternative software is used, the steps and their order described in this protocol might diverge significantly. A cost-effective alternative to create 3D models is digital photogrammetry using commercial cameras and freely available software like Meshroom (https://alicevision.org). Although photogrammetry is an affordable technique to create accurate 3D models of objects, this method might not be useful when scanning large batches of artefacts, as it will require a lot of computation time and processing capacity. Likewise, it could be difficult to generate accurate 3D models of very small and/or detailed tool shapes using 3D surface scanners because stone tools are often much smaller than the recommended minimum field of view. Similarly, the resolution of conventional medical CT scanners might not be sufficient to capture minor details of stone tools, such as the outline or dorsal scars. Thus, high-resolution micro-CT technology is the only reliable way to accurately capture the overall morphology of small stone tools. This protocol aims at providing the first detailed procedure dedicated to the scanning of small lithic implements for further three-dimensional analysis. Note that some of the steps must be repeated at different working stages throughout this protocol. In cases where a task must be done in the exact same way as described in a previous step, a reference to that step is provided. When slight changes were made, the step was modified and reported entirely. This protocol contains a few red and green colours (e.g., arrows or within-program colours) which might be perceived differently by people with dyschromatopsia. However, the display of these colours has been kept to a minimum. We recommend the reader to go over the entire protocol carefully, even if only some specific parts are required. A few points are in fact interdependent, and some of them must be applied simultaneously. Content: Part 1 – Styrofoam preparation Part 2 – Micro-CT scanning Part 3 – 3D model extraction of CT scanned stone artifacts using Avizo Part 4 – Cropping extracted surface model to separate Face A and B in Artec Studio Part 5 – Cropping Face A to separate the lines in Artec Studio Part 6 – Cropping each stone artefact from the lines in Artec Studio Part 7 – Virtually control measurements in MeshLab Part 8 – Artec scanning of larger artifacts Part 9 – Export meshes as non-binary ply models for successive analysis in geomorph Three-dimensional example (in ply format) of the effectivity of the StyroStone Protocol: You can download an example of one Styrofoam line in 3D obtained using our protocol to appreciate the result that can be achieved. We have selected a line where objects are characterized by different metric and morphological attributes. Notice the retouching well visible in the last five smaller artifacts (counting from the left when artifact are oriented with the dorsal face in front of the observer and the butt down), as well as the platforms and bulbs of all artifacts. For more information and examples, feel free to contact us!


2021 ◽  
Author(s):  
Eva Chatzinikolaou ◽  
Kleoniki Keklikoglou

Micro-computed tomography (micro-CT) is a high-resolution 3D-imaging technique which is now increasingly applied in biological studies focusing on taxonomy and functional morphology. The creation of virtual representations of specimens can increase availability of otherwise underexploited and inaccessible samples. This protocol aims to standardise micro-CT scanning procedures for embryos and juveniles of the marine gastropod species Hexaplex trunculus.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Gregor Luetzenburg ◽  
Aart Kroon ◽  
Anders A. Bjørk

AbstractTraditionally, topographic surveying in earth sciences requires high financial investments, elaborate logistics, complicated training of staff and extensive data processing. Recently, off-the-shelf drones with optical sensors already reduced the costs for obtaining a high-resolution dataset of an Earth surface considerably. Nevertheless, costs and complexity associated with topographic surveying are still high. In 2020, Apple Inc. released the iPad Pro 2020 and the iPhone 12 Pro with novel build-in LiDAR sensors. Here we investigate the basic technical capabilities of the LiDAR sensors and we test the application at a coastal cliff in Denmark. The results are compared to state-of-the-art Structure from Motion Multi-View Stereo (SfM MVS) point clouds. The LiDAR sensors create accurate high-resolution models of small objects with a side length > 10 cm with an absolute accuracy of ± 1 cm. 3D models with the dimensions of up to 130 × 15 × 10 m of a coastal cliff with an absolute accuracy of ± 10 cm are compiled. Overall, the versatility in handling outweighs the range limitations, making the Apple LiDAR devices cost-effective alternatives to established techniques in remote sensing with possible fields of application for a wide range of geo-scientific areas and teaching.


2015 ◽  
Vol 26 (6) ◽  
pp. 596-601 ◽  
Author(s):  
Carlos Eduardo E. Rezende ◽  
Jason Alan Griggs ◽  
Yuanyuan Duan ◽  
Amanda M. Mushashe ◽  
Gisele Maria Correr Nolasco ◽  
...  

This study aimed to measure the preload in different implant platform geometries based on micro-CT images. External hexagon (EH) implants and Morse Tapered (MT) implants (n=5) were used for the preload measurement. The abutment screws were scanned in micro-CT to obtain their virtual models, which were used to record their initial length. The abutments were screwed on the implant with a 20 Ncm torque and the set composed by implant, abutment screw and abutment were taken to the micro-CT scanner to obtain virtual slices of the specimens. These slices allowed the measurement of screw lengths after torque application and based on the screw elongation. Preload values were calculated using the Hooke's Law. The preloads of both groups were compared by independent t-test. Removal torque of each specimen was recorded. To evaluate the accuracy of the micro-CT technique, three rods with known lengths were scanned and the length of their virtual model was measured and compared with the original length. One rod was scanned four times to evaluate the measuring method variation. There was no difference between groups for preload (EH = 461.6 N and MT = 477.4 N), but the EH group showed higher removal torque values (13.8±4.7 against 8.2±3.6 Ncm for MT group). The micro-CT technique showed a variability of 0.053% and repeatability showed an error of 0.23 to 0.28%. Within the limitations of this study, there was no difference between external hexagon and Morse taper for preload. The method using micro-CT may be considered for preload calculation.


2006 ◽  
Vol 126 (5) ◽  
pp. 467-474 ◽  
Author(s):  
A. Postnov ◽  
A. Zarowski ◽  
N. De Clerck ◽  
F. Vanpoucke ◽  
F.E. Offeciers ◽  
...  

2020 ◽  
Author(s):  
Derek B. Counts ◽  
Erik Walcek Averett ◽  
Kevin Garstki ◽  
Michael K. Toumazou

Visualizing Votive Practice is an innovative, open-access, digital monograph that explores the limestone and terracotta sculptures excavated from a rural sanctuary at the site of Athienou-Malloura (Cyprus) by the Athienou Archaeological Project. Chapters on the archaeology of the site, the historiography of Cypriot sculpture, and perspectives on archaeological visualization provide context for the catalogue of 50 representative examples of votive sculpture from the sanctuary. The catalogue not only includes formal and contextual information for each object, but also embeds 3D models directly onto the page. Readers can not only view, but also manipulate, measure, zoom, and rotate each model. Additionally, links at the bottom of each entry unleash high-resolution models with accompanying metadata on the Open Context archaeological data publishing platform and on via the Sketchfab 3D viewing platform as well. This innovative monograph is aimed at a variety of audiences, from Mediterranean archaeologists and students to specialists interested in 3D visualization techniques.


Author(s):  
F. Rechichi ◽  
A. Mandelli ◽  
C. Achille ◽  
F. Fassi

BIM3DSG system is described here. It is an ad hoc designed BIM system created for Cultural Heritage applications. It proposes some solutions to solve some issues related to the use of BIM in this field. First, it tries to resolve the problem of managing huge, complex, high resolution and heterogeneous 3D models, and then it offers a practical, easy and efficient solution for a wide sharing of data and information.


2014 ◽  
Vol 15 (4) ◽  
pp. 335-344 ◽  
Author(s):  
Guangyan Dong ◽  
Qianqian Dong ◽  
Yi Liu ◽  
Beiyan Lou ◽  
Jin Feng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document