Automated centreline extraction of neuronal dendrite from optical microscopy image stacks

2010 ◽  
Author(s):  
Liang Xiao ◽  
Fanbiao Zhang
Soft Matter ◽  
2019 ◽  
Vol 15 (1) ◽  
pp. 109-115 ◽  
Author(s):  
Timothy Ogolla ◽  
Robert S. Paley ◽  
Peter J. Collings

Polarized optical microscopy image of a fingerprint texture for a lyotropic chromonic liquid crystal entering the chiral nematic–isotropic coexistence region. The helical axis is in the plane of the image and the perpendicular distance between the stripes is around 50 μm, half the chiral nematic pitch.


2017 ◽  
Vol 23 (1&2) ◽  
pp. 113 ◽  
Author(s):  
M.B. Harun ◽  
S.R. Shamsudin ◽  
H. Yazid ◽  
Z. Selamat ◽  
M.S. Sattar ◽  
...  

The microstructure of cast Al-4Si-Mg reinforcedwith fly ash particles at various particlecontents has been studied. The composites were fabricated by stir casting process andcharacterized by optical microscopy, image analyzer, scanning electron microscopy and hardness measurements. The results showed that particle contents affected to the presence oforosities and hardness of the composites. It was observed that increasing the fly ash contentincrease the porosity in the composites, with the matrix alloy reinforced with 15 wt.% of fly ash particles having the highest porosity and lowest hardness.


2011 ◽  
Vol 335-336 ◽  
pp. 797-804
Author(s):  
Yu Xuan Li ◽  
Zhen Duo Cui ◽  
Xian Jin Yang ◽  
Sheng Li Zhu

In the present study, porous titanium alloys were fabricated successfully by mixing titanium, niobium, and zirconium powder with pore-forming agent of ammonium bicarbonate via conventional sintering method. The pore characteristics, such as pore morphology and distribution, mean pore size and porosity of prepared porous TiNb24Zr4alloy were investigated by optical microscopy, image processing and density determination. It was found that the pore characteristics mainly depended on the shape and size of used ammonium bicarbonate particles in present study. The porosity of the alloys could be tailored by controlling the amount of ammonium bicarbonate addition. The porous TiNb24Zr4alloys were near β type titanium alloys, which consisted mainly of β phase and a little of α phase. The amount of α phase increased in the porous alloys due to segregation caused by the addition of pore-forming agent.


1992 ◽  
Vol 287 ◽  
Author(s):  
Kevin P. Plucknett ◽  
David S. Wilkinson

The microstructure of a series of microwave sintered silicon nitride based ceramics have been assessed using a combination of optical microscopy/image analysis and analytical electron microscopy. Materials were studied as-received and after post-sinter hot-isostatic pressing. The grain size of microwave sintered materials was appreciably finer than conventionally processed ceramics of similar composition, although the mechanism involved is not clear. The as-received ceramics exhibited a reverse porosity gradient (with the highest porosity level at the surface) due to heat dissipation to the cooler surroundings during sintering. This also resulted in a small increase in the β′ grain aspect ratio close to the surface arising from an increase in the glass phase viscosity as the temperature decreases. Post-sinter HIPing of microwave sintered samples resulted in the elimination of most of the bulk porosity, but not near the surface. This is due to the reverse porosity gradient previously described, which leads to a transition from closed to open porosity with decreasing density near to the surface.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Naoki Fukutake

Abstract Optical resolution of far-field optical microscopy is limited by the diffraction of light, while diverse light-matter interactions are used to push the limit. The image resolution limit depends on the type of optical microscopy; however, the current theoretical frameworks provide oversimplified pictures of image formation and resolution that only address individual types of microscopy and light-matter interactions. To compare the fundamental optical resolutions of all types of microscopy and to codify a unified image-formation theory, a new method that describes the influence of light-matter interactions on the resolution limit is required. Here, we develop an intuitive technique using double-sided Feynman diagrams that depict light-matter interactions to provide a bird’s-eye view of microscopy classification. This diagrammatic methodology also allows for the optical resolution calculation of all types of microscopy. We show a guidepost for understanding the potential resolution and limitation of all optical microscopy. This principle opens the door to study unexplored theoretical questions and lead to new applications.


Sign in / Sign up

Export Citation Format

Share Document