Two dimensional scanning probe using off-axis magnetic force of single solenoid for 3D OCT imaging

2011 ◽  
Author(s):  
Eun Jung Min ◽  
Jun Geun Shin ◽  
Yuri Kim ◽  
Byeong Ha Lee
2014 ◽  
Vol 214 ◽  
pp. 143-150
Author(s):  
Piotr Graca

The paper presents numerical modeling of an Axial Active Magnetic Bearing (AAMB) based on two-dimensional (2D) magnetic field computation. The calculations, assisted by the Finite Element Method (FEM), have focused on the determination of the magnetic flux density and the magnetic force. Obtained magnetic field parameters were then measured and verified on a physical model.


2019 ◽  
Author(s):  
Qitang Fan ◽  
Daniel Martin-Jimenez ◽  
Daniel Ebeling ◽  
Claudio K. Krug ◽  
Lea Brechmann ◽  
...  

Various two-dimensional (2D) carbon allotropes with non-alternant topologies, such as pentaheptites and phagraphene, have been proposed. Predictions indicate that these metastable carbon polymorphs, which contain odd-numbered rings, possess unusual (opto)electronic properties. However, none of these materials has been achieved experimentally due to synthetic challenges. In this work, by using on-surface synthesis, nanoribbons of the non-alternant graphene allotropes, phagraphene and tetra-penta-hepta(TPH)-graphene have been obtained by dehydrogenative C-C coupling of 2,6-polyazulene chains. These chains were formed in a preceding reaction step via on-surface Ullmann coupling of 2,6-dibromoazulene. Low-temperature scanning probe microscopies with CO-functionalized tip and density functional theory calculations have been used to elucidate their structural properties. <br>


2018 ◽  
Vol 185 ◽  
pp. 05004
Author(s):  
Pavel Geydt ◽  
Igor D. Rodionov ◽  
Alexander B. Granovsky ◽  
Ekaterina Soboleva ◽  
Egor Fadeev ◽  
...  

Magnetostructural transition was observed in Ni-Mn-In-Cr Heusler alloy with help of Magnetic Force Microscopy (MFM). The crystal structure of a sample and characteristic temperatures of the phase transition were controlled by roentgenostructural phase analysis and magnetometry, respectively. It appeared prominently important to prepare the surface of the sample until the nanometer level of surface roughness. Magnetic study performed with scanning probe microscope revealed existence of magnetic domains, which were spread across the surface evenly. Further studies revealed that intensity of magnetic signal decreases as fading out of the contrast of the MFM images. It was found that location of domains shifted after the heating/cooling cycle above Curie temperature for the studied alloy. Location of new domain walls appeared correlating with surface scrapings and defects, whilst it became independent from those after heating until just 70°C. The mechanism behind the observed transition is proposed.


Author(s):  
Fernando E. García-Ramírez¹ ◽  
Sylwester Bargiel¹ ◽  
Olivier Gaiffe¹ ◽  
Quentin A. A. Tanguy¹ ◽  
Przemyslaw Struk ◽  
...  
Keyword(s):  

2014 ◽  
Vol 2 (5) ◽  
Author(s):  
M. Pelliccione ◽  
B. A. Myers ◽  
L. M. A. Pascal ◽  
A. Das ◽  
A. C. Bleszynski Jayich

2019 ◽  
Author(s):  
Qitang Fan ◽  
Daniel Martin-Jimenez ◽  
Daniel Ebeling ◽  
Claudio K. Krug ◽  
Lea Brechmann ◽  
...  

Various two-dimensional (2D) carbon allotropes with non-alternant topologies, such as pentaheptites and phagraphene, have been proposed. Predictions indicate that these metastable carbon polymorphs, which contain odd-numbered rings, possess unusual (opto)electronic properties. However, none of these materials has been achieved experimentally due to synthetic challenges. In this work, by using on-surface synthesis, nanoribbons of the non-alternant graphene allotropes, phagraphene and tetra-penta-hepta(TPH)-graphene have been obtained by dehydrogenative C-C coupling of 2,6-polyazulene chains. These chains were formed in a preceding reaction step via on-surface Ullmann coupling of 2,6-dibromoazulene. Low-temperature scanning probe microscopies with CO-functionalized tip and density functional theory calculations have been used to elucidate their structural properties. <br>


2002 ◽  
Vol 68 (3) ◽  
pp. 221-235 ◽  
Author(s):  
C. MELLOR ◽  
V. S. TITOV ◽  
E. R. PRIEST

A technique is developed for analysing the linear collapse properties of spatially linear two-dimensional null points with open boundary conditions. A treatment is given of the collapse of nulls which have current and flow so that they are initially in a steady-state balance between a magnetic force, a pressure force and a centrifugal force. This extends the previous results for initially current-free X-type nulls with no flow. It is found that all X-points, regardless of the current and flow tend to collapse. Also, O-points collapse in the absence of a plasma flow, but O-points with a large current and possessing a highly super-Alfvénic plasma flow can be stable against linear collapse.


Author(s):  
Weichen Guo ◽  
Bao-Quan Ai ◽  
Liang He

Abstract We investigate the two-dimensional melting of deformable polymeric particles with multi-body interactions described by the Voronoi model. We report machine learning evidence for the existence of the intermediate hexatic phase in this system, and extract the critical exponent $\nu\approx0.65$ for the divergence of the correlation length of the associated solid-hexatic phase transition. Moreover, we clarify the discontinuous nature of the hexatic-liquid phase transition in this system. These findings are achieved by directly analyzing system's spatial configurations with two generic machine learning approaches developed in this work, dubbed ``scanning-probe'' via which the possible existence of intermediate phases can be efficiently detected, and ``information-concealing'' via which the critical scaling of the correlation length in the vicinity of generic continuous phase transition can be extracted. Our work provides new physical insights into the fundamental nature of the two-dimensional melting of deformable particles, and establishes a new type of generic toolbox to investigate fundamental properties of phase transitions in various complex systems.


Sign in / Sign up

Export Citation Format

Share Document