Design of electromagnetic energy harvesters for large-scale structural vibration applications

Author(s):  
Ian L. Cassidy ◽  
Jeffrey T. Scruggs ◽  
Sam Behrens
Author(s):  
Cheng Ning Loong ◽  
Chih-Chen Chang

The energy scavenged from a vibrating building installed with distributed electromagnetic energy harvesters under random excitation is analyzed. Each harvester is connected to an energy harvesting circuit made of a full-wave bridge rectifier connecting a resistor in parallel with a capacitor. Statistical linearization is adopted to estimate the stationary response of the harvester-structure system. As an illustrative example, a 20-story building equipped with 16 harvesters on each story is examined. Results show that the scavenged energy mainly concentrates at the higher stories. The vibration mitigation and energy scavenging performance of the harvesters can be enhanced simultaneously with the proper design of harvesters and circuits. Gradient ascent approach with the first-order perturbation approximation is proposed to determine the optimal design of distributed harvesters with nonlinear circuits that maximizes the total mean output power. Results show that output power decreases due to circuit nonlinearity. The maximum total mean output power obtained from the 20-story building under wind excitations with mean speed of 5 m/s is around 1.32–2.17 kW for harvesters having short-circuit damping coefficient ranging 100–300 kNs/m. These results show that scavenging energy from structural vibration is a feasible technology even considering the negative effect of circuit nonlinearity.


2020 ◽  
pp. 151-159
Author(s):  
Ramy A. Mohamed ◽  
Ayman El-Badawy ◽  
Ahmed Moustafa ◽  
Andrew Kirolos ◽  
Mostafa Soliman ◽  
...  

2020 ◽  
Author(s):  
Haziq Kamal ◽  
Peyman Moghadam

<div>Advances in design and development of light-weight and low power wearable and mobile devices open up the possibility of lifetime extension of these devices from ambient sources through energy harvesting devices as opposed to periodically recharge the batteries. The most commonly available ambient energy source for mobile devices is Kinetic energy harvesters (KEH). The major drawback of the energy harvesters is limited effectiveness of harvesting mechanism near a fixed resonant frequency. It is difficult to harvest a reliable amount of energy from every forms of device motions with different excitation frequencies. To overcome this drawback, in this paper we propose an adaptive electromagnetic energy harvester which utilises spring characteristics to adapt its resonant frequency to match the ambient excitation frequency. This paper presents a prototype design and analysis of an adaptive electromagnetic energy harvester both in simulation and real. The harvester has tested using a specially designed experimental setup and compared with numerical simulations. The proposed solution generates 3.5 times higher maximum power over the default power output and 2.4 times higher maximum frequency compared to a fixed resonant frequency electromagnetic energy harvester.</div>


2018 ◽  
Vol 18 (11) ◽  
pp. 4509-4516 ◽  
Author(s):  
Oguz Yasar ◽  
Hasan Ulusan ◽  
Ozge Zorlu ◽  
Ozlem Sardan-Sukas ◽  
Haluk Kulah

2011 ◽  
Vol 22 (16) ◽  
pp. 1929-1938 ◽  
Author(s):  
S. F. Ali ◽  
M. I. Friswell ◽  
S. Adhikari

This article investigates the possibility of piezoelectric energy harvesters as energy scavenging devices in highway bridges. The structural vibration due to the motion of a load (vehicle) on the bridge is considered as the source of energy generation for the harvester. The energy generated in this way can be useful for wireless sensor networks for structural health monitoring of bridges by reducing or even eliminating the need for battery replacement/recharging. A highway bridge model with a moving point load is investigated and a linear single-degree-of-freedom model is used for the piezoelectric energy harvester. Two types of harvesters, namely, the harvesting circuit with and without an inductor, have been considered and the energy generated for a single vehicle has been estimated. These results may be used, together with traffic statistics, to obtain the variation of average power and thus, for a given application, help to design the energy management system.


2021 ◽  
Vol 2021 ◽  
pp. 1-19
Author(s):  
Hongjun Zhu ◽  
Tao Tang ◽  
Huohai Yang ◽  
Junlei Wang ◽  
Jinze Song ◽  
...  

Flow-induced vibration (FIV) is concerned in a broad range of engineering applications due to its resultant fatigue damage to structures. Nevertheless, such fluid-structure coupling process continuously extracts the kinetic energy from ambient fluid flow, presenting the conversion potential from the mechanical energy to electricity. As the air and water flows are widely encountered in nature, piezoelectric energy harvesters show the advantages in small-scale utilization and self-powered instruments. This paper briefly reviewed the way of energy collection by piezoelectric energy harvesters and the various measures proposed in the literature, which enhance the structural vibration response and hence improve the energy harvesting efficiency. Methods such as irregularity and alteration of cross-section of bluff body, utilization of wake flow and interference, modification and rearrangement of cantilever beams, and introduction of magnetic force are discussed. Finally, some open questions and suggestions are proposed for the future investigation of such renewable energy harvesting mode.


Author(s):  
Aakash Gupta ◽  
Wei-Che Tai

Abstract Inerter-based vibration energy harvesters (VEHs) have been widely studied to harvest energy from large-scale structural vibrations. Recently, there have been efforts to increase the operation frequency bandwidth of VEHs by introducing a variety of stiffness and inertia nonlinearity. This paper proposes a new inerter-based VEH comprising an epicyclic-gearing inerter and a pendulum vibration absorber. The centrifugal force of the pendulum introduces a new type of inertia nonlinearity that broadens the frequency bandwidth. This inerter-pendulum VEH (IPVEH) is incorporated in a single-degree-of-freedom structure to demonstrate its performance and the equations of motion of the system are derived. The method of multiple scales is applied to derive the amplitude–frequency response relationship of the harvested power in the primary resonance. The harvested power is optimized through tuning the harvester’s electrical damping and the optimum power is benchmarked with that of conventional linear inerter-based VEHs. The results show that the IPVEH has larger bandwidth and harvested power and the improvement is correlated with the strength of its inertia nonlinearity.


Sign in / Sign up

Export Citation Format

Share Document