Scavenging energy from a vibrating building using distributed electromagnetic energy harvesters with nonlinear circuits

Author(s):  
Cheng Ning Loong ◽  
Chih-Chen Chang

The energy scavenged from a vibrating building installed with distributed electromagnetic energy harvesters under random excitation is analyzed. Each harvester is connected to an energy harvesting circuit made of a full-wave bridge rectifier connecting a resistor in parallel with a capacitor. Statistical linearization is adopted to estimate the stationary response of the harvester-structure system. As an illustrative example, a 20-story building equipped with 16 harvesters on each story is examined. Results show that the scavenged energy mainly concentrates at the higher stories. The vibration mitigation and energy scavenging performance of the harvesters can be enhanced simultaneously with the proper design of harvesters and circuits. Gradient ascent approach with the first-order perturbation approximation is proposed to determine the optimal design of distributed harvesters with nonlinear circuits that maximizes the total mean output power. Results show that output power decreases due to circuit nonlinearity. The maximum total mean output power obtained from the 20-story building under wind excitations with mean speed of 5 m/s is around 1.32–2.17 kW for harvesters having short-circuit damping coefficient ranging 100–300 kNs/m. These results show that scavenging energy from structural vibration is a feasible technology even considering the negative effect of circuit nonlinearity.

2011 ◽  
Vol 22 (16) ◽  
pp. 1929-1938 ◽  
Author(s):  
S. F. Ali ◽  
M. I. Friswell ◽  
S. Adhikari

This article investigates the possibility of piezoelectric energy harvesters as energy scavenging devices in highway bridges. The structural vibration due to the motion of a load (vehicle) on the bridge is considered as the source of energy generation for the harvester. The energy generated in this way can be useful for wireless sensor networks for structural health monitoring of bridges by reducing or even eliminating the need for battery replacement/recharging. A highway bridge model with a moving point load is investigated and a linear single-degree-of-freedom model is used for the piezoelectric energy harvester. Two types of harvesters, namely, the harvesting circuit with and without an inductor, have been considered and the energy generated for a single vehicle has been estimated. These results may be used, together with traffic statistics, to obtain the variation of average power and thus, for a given application, help to design the energy management system.


Energies ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 627 ◽  
Author(s):  
Seong-yeol Yoo ◽  
Young-Woo Park ◽  
Myounggyu Noh

Electromagnetic energy harvesters have been used to capture low-frequency vibration energy of large machines such as diesel generators. The structure of an electromagnetic energy harvester is either planar or tubular. Past research efforts focus on optimally designing each structure separately. An objective comparison between the two structures is necessary in order to decide which structure is advantageous. When comparing the structures, the design variations such as magnetization patterns and the use of yokes must also be considered. In this study, extensive comparisons are made covering all possible topologies of an electromagnetic energy harvester. A bench mark harvester is defined and the parameters that produce maximum output power are identified for each topology. It is found that the tubular harvesters generally produce larger output power than the planar counterparts. The largest output power is generated by the tubular harvester with a Halbach magnetization pattern (94.7 mW). The second best is the tubular harvester with axial magnetization pattern (79.1 mW) when moving yokes are inserted between permanent magnets for flux concentration. When cost is of primary concern, the tubular harvester with axial pattern may become a best option.


Sensors ◽  
2020 ◽  
Vol 20 (19) ◽  
pp. 5456
Author(s):  
Tra Nguyen Phan ◽  
Sebastian Bader ◽  
Bengt Oelmann

The introduction of nonlinearities into energy harvesting in order to improve the performance of linear harvesters has attracted a lot of research attention recently. The potential benefits of nonlinear harvesters have been evaluated under sinusoidal or random excitation. In this paper, the performances of electromagnetic energy harvesters with linear and nonlinear springs are investigated under real vibration data. Compared to previous studies, the parameters of linear and nonlinear harvesters used in this paper are more realistic and fair for comparison since they are extracted from existing devices and restricted to similar sizes and configurations. The simulation results showed that the nonlinear harvester did not generate higher power levels than its linear counterpart regardless of the excitation category. Additionally, the effects of nonlinearities were only available under a high level of acceleration. The paper also points out some design concerns when harvesters are subjected to real vibrations.


Micromachines ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 803
Author(s):  
Zhongjie Li ◽  
Chuanfu Xin ◽  
Yan Peng ◽  
Min Wang ◽  
Jun Luo ◽  
...  

A novel hybridization scheme is proposed with electromagnetic transduction to improve the power density of piezoelectric energy harvester (PEH) in this paper. Based on the basic cantilever piezoelectric energy harvester (BC-PEH) composed of a mass block, a piezoelectric patch, and a cantilever beam, we replaced the mass block by a magnet array and added a coil array to form the hybrid energy harvester. To enhance the output power of the electromagnetic energy harvester (EMEH), we utilized an alternating magnet array. Then, to compare the power density of the hybrid harvester and BC-PEH, the experiments of output power were conducted. According to the experimental results, the power densities of the hybrid harvester and BC-PEH are, respectively, 3.53 mW/cm3 and 5.14 μW/cm3 under the conditions of 18.6 Hz and 0.3 g. Therefore, the power density of the hybrid harvester is 686 times as high as that of the BC-PEH, which verified the power density improvement of PEH via a hybridization scheme with EMEH. Additionally, the hybrid harvester exhibits better performance for charging capacitors, such as charging a 2.2 mF capacitor to 8 V within 17 s. It is of great significance to further develop self-powered devices.


Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 391
Author(s):  
Nan Wu ◽  
Yuncheng He ◽  
Jiyang Fu ◽  
Peng Liao

In this paper a novel hybrid piezoelectric and electromagnetic energy harvester for civil engineering low-frequency sloshing environment is reported. The architecture, fabrication and characterization of the harvester are discussed. The hybrid energy harvester is composed of a permanent magnet, copper coil, and PVDF(polyvinylidene difluoride) piezoelectric film, and the upper U-tube device containing a cylindrical fluid barrier is connected to the foundation support plate by a hinge and spring. The two primary means of energy collection were through the vortex street, which alternately impacted the PVDF piezoelectric film through fluid shedding, and the electromotive force (EMF) induced by changes in the magnetic field position in the conducting coil. Experimentally, the maximum output power of the piezoelectric transformer of the hybrid energy harvester was 2.47 μW (circuit load 270 kΩ; liquid level height 80 mm); and the maximum output power of the electromagnetic generator was 2.72 μW (circuit load 470 kΩ; liquid level height 60 mm). The low-frequency sloshing energy collected by this energy harvester can drive microsensors for civil engineering monitoring.


Author(s):  
Guangya Ding ◽  
Hongjun Luo ◽  
Jun Wang ◽  
Guohui Yuan

A novel lever piezoelectric energy harvester (LPEH) was designed for installation in an actual roadway for energy harvesting. The model incorporates a lever module that amplifies the applied traffic load and transmits it to the piezoelectric ceramic. To observe the piezoelectric growth benefits of the optimized LPEH structure, the output characteristics and durability of two energy harvesters, the LPEH and a piezoelectric energy harvester (PEH) without a lever, were measured and compared by carrying out piezoelectric performance tests and traffic model experiments. Under the same loading condition, the open circuit voltages of the LPEH and PEH were 20.6 and 11.7 V, respectively, which represents a 76% voltage increase for the LPEH compared to the PEH. The output power of the LPEH was 21.51 mW at the optimal load, which was three times higher than that of the PEH (7.45 mW). The output power was linearly dependent on frequency and load, implying the potential application of the module as a self-powered speed sensor. When tested during 300,000 loading cycles, the LPEH still exhibited stable structural performance and durability.


2020 ◽  
pp. 151-159
Author(s):  
Ramy A. Mohamed ◽  
Ayman El-Badawy ◽  
Ahmed Moustafa ◽  
Andrew Kirolos ◽  
Mostafa Soliman ◽  
...  

2020 ◽  
Author(s):  
Haziq Kamal ◽  
Peyman Moghadam

<div>Advances in design and development of light-weight and low power wearable and mobile devices open up the possibility of lifetime extension of these devices from ambient sources through energy harvesting devices as opposed to periodically recharge the batteries. The most commonly available ambient energy source for mobile devices is Kinetic energy harvesters (KEH). The major drawback of the energy harvesters is limited effectiveness of harvesting mechanism near a fixed resonant frequency. It is difficult to harvest a reliable amount of energy from every forms of device motions with different excitation frequencies. To overcome this drawback, in this paper we propose an adaptive electromagnetic energy harvester which utilises spring characteristics to adapt its resonant frequency to match the ambient excitation frequency. This paper presents a prototype design and analysis of an adaptive electromagnetic energy harvester both in simulation and real. The harvester has tested using a specially designed experimental setup and compared with numerical simulations. The proposed solution generates 3.5 times higher maximum power over the default power output and 2.4 times higher maximum frequency compared to a fixed resonant frequency electromagnetic energy harvester.</div>


Sign in / Sign up

Export Citation Format

Share Document