Acoustic emission monitor and evaluation method of steel corrosion damage for reinforced concrete

2011 ◽  
Author(s):  
Dongsheng Li ◽  
Suikun Ding ◽  
Yuan Tao
2011 ◽  
Vol 94-96 ◽  
pp. 244-247
Author(s):  
Feng Peng Zhang ◽  
Zhao Guo Qiu ◽  
Han Zhi

Damages correlation of prestressed concrete beam and its safety evaluation have been studied by finite element method. The influences of three typical damages on deflection of beam have been analyzed. The vertical crack damage (VC) has been simulated by pre-crack and contact elements has been set between crack surfaces, the reinforcing steel corrosion damage (RSC) has been simulated by reducing the effective area of the reinforcing steel, and the concrete strength degradation damage (CSD) has been simulated by changing the elastic modulus of concrete based on the relationship between concrete strength and its elastic modulus. Damage correlation variables have been defined, and safety evaluation method of concrete beam based on damage correlation has been discussed. The results showed that: there is a strong nonlinear correlation between VC and RSC, and the beam's safety states are significantly reduced because of the interaction of damages.


Crystals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 67
Author(s):  
Ye Chen ◽  
Shuang Zhu ◽  
Shenghua Ye ◽  
Yifeng Ling ◽  
Dan Wu ◽  
...  

In this paper, the damage of a reinforced concrete (RC) column with various levels of reinforcement corrosion under axial loads is characterized using the acoustic emission (AE) technique. Based on the AE rate process theory, a modified damage evolution equation of RC associated with the axial load and different corrosion rates is proposed. The experimental results show that the measured AE signal parameters during the loading process are closely related to the damage evolution of the RC column as well as the reinforcement corrosion level. The proposed modified damage evolution equation enables dynamic analysis for the damage of corrosion on a RC column under axial loading for a further real-time quantitative evaluation of corrosion damage on reinforced concrete.


2018 ◽  
Vol 199 ◽  
pp. 05001
Author(s):  
Christian Christodoulou ◽  
Chris Goodier ◽  
Gareth Glass

This work reviews developments in the understanding of chloride induced corrosion of steel in concrete from both a kinetic and thermodynamic perspective. Corrosion damage is at least in part attributed to the production of acid at sites of corrosion initiation. Solid phase inhibitors provide a reservoir of hydroxyl ions to inhibit damage. Pit re-alkalisation is identified as an important protective effect in electrochemical treatments used to arrest corrosion. A process like pit re-alkalisation is achieved more easily by impressing current from sacrificial anodes using a power supply which may then be followed by low maintenance galvanic protection to prevent local acidification. Methods for monitoring the steel corrosion rate in electrochemically treated reinforced concrete have been developed and used to assess corrosion risk. Some of these concepts have been adopted in the recent international standard on cathodic protection, ISO 12696:2016, some of the amendments of which are considered in the work presented here.


2019 ◽  
Vol 9 (8) ◽  
pp. 1640 ◽  
Author(s):  
Zhang ◽  
Tan ◽  
Wang ◽  
Cheng ◽  
Yang ◽  
...  

The purpose of this research is to utilize a more advanced test method for investigating the effect of steel corrosion on the flexural characteristics of a reinforced concrete (RC) beam on a microscopic cracking level. Firstly, over-reinforced RC beam specimens were prepared and corroded using an electrical accelerated steel corrosion setup in different ratios. Subsequently, bending and acoustic emission (AE) tests were performed on all the specimens to obtain their ultimate flexural loads, failure modes and AE signals. Furthermore, rise time/peak amplitude (R/A), ringing counts/duration (AF) and improved b (Ib) values, as the statistical parameters of AE signals, were calculated for indicating the transformation of RC specimens’ crack modes and failure modes under the effect of steel corrosion. Finally, the locations of AE events were obtained by localization technology and compared with the locations of concrete cracks (cracks map). The results revealed that the ultimate flexural load decreases with steel corrosion. The crack tends to transform from shear- to tensile-type along with the increase of the steel corrosion ratio. The trend of the Ib-value curve can reflect the formation and development of cracks; and the larger the duration of violent fluctuations in the Ib-value curve is, the larger the ultimate flexural load of the RC beam is. The region where the crack is located can be judged by the position where the relatively dense distribution of the AE events is.


2021 ◽  
pp. 147592172110133
Author(s):  
Charlotte Van Steen ◽  
Hussein Nasser ◽  
Els Verstrynge ◽  
Martine Wevers

Worldwide, asset managers are struggling with the management of ageing infrastructure in reinforced concrete. Early detection of reinforcement corrosion, which is generally considered as the major problem, can help to perform dedicated maintenance and repair. The acoustic emission technique is promising to reach this goal. However, research on the characterisation of the different damage sources during corrosion in reinforced concrete remains scarce. In this article, the characterisation of damage processes is investigated on small reinforced concrete prisms and upscaled to reinforced concrete beams under accelerated conditions in a laboratory environment. Damage sources are assigned based on careful validation with crack width measurements and dummy samples. Signals originating from different acoustic emission sources are compared in the time and frequency domain. Moreover, the continuous wavelet transform is applied to provide information on time–frequency characteristics. The results show that the moment of concrete macro-cracking can be derived from a sudden increase of the cumulative acoustic emission events and cumulative acoustic emission energy. However, validation with crack measurements is required. The shift in both peak and centre frequency of the acoustic emission signals is found to be a better indicator. Wavelet transform allows to distinguish acoustic emission sources when frequency ranges are overlapping. Possible acoustic emission sources such as the corrosion process and concrete cover cracking, are successfully assigned. The major contributions of this article are the characterisation of acoustic emission sources from corrosion damage in reinforced concrete, validation with crack measurements and dummy samples, as well as a dedicated wavelet analysis.


Sign in / Sign up

Export Citation Format

Share Document