scholarly journals Acoustic Emission Study on the Damage Evolution of a Corroded Reinforced Concrete Column under Axial Loads

Crystals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 67
Author(s):  
Ye Chen ◽  
Shuang Zhu ◽  
Shenghua Ye ◽  
Yifeng Ling ◽  
Dan Wu ◽  
...  

In this paper, the damage of a reinforced concrete (RC) column with various levels of reinforcement corrosion under axial loads is characterized using the acoustic emission (AE) technique. Based on the AE rate process theory, a modified damage evolution equation of RC associated with the axial load and different corrosion rates is proposed. The experimental results show that the measured AE signal parameters during the loading process are closely related to the damage evolution of the RC column as well as the reinforcement corrosion level. The proposed modified damage evolution equation enables dynamic analysis for the damage of corrosion on a RC column under axial loading for a further real-time quantitative evaluation of corrosion damage on reinforced concrete.

2011 ◽  
Vol 488-489 ◽  
pp. 464-467
Author(s):  
Ji Ze Mao ◽  
Zhi Yuan Zhang ◽  
Zong Min Liu ◽  
Chao Sun

With the development of damage mechanics, many researchers have used it to analyze the constitutive equation of concrete. Since the special environment in the cold marine regions, the offshore structures are common to subject to the comprehensive effects of freeze-thaw action and chloride erosion. This might cause concrete materials degradation and reduce the mechanical performance of concrete seriously. In this paper, based on the analysis and mechanical experiments of concrete materials under the comprehensive effects of freeze-thaw action and chloride ion erosion, the damage evolution equation of concrete elastic modulus along with the freeze-thaw cycles and chloride ion contents was established. The effects of chloride ion were investigated during the process of concrete degradation. According to the damage evolution equation, a new constitutive equation of concrete under freeze-thaw action and chloride erosion was established. And then, by means of the element simulation analysis of concrete beams when subjected to the comprehensive actions, the feasibility and applicability of the equation was examined and discussed. In this equation, both the freeze-thaw action and chloride ion erosion were considered together. It will be more suitable for analyzing the durability of concrete structures in the real cold marine regions. It will also provide some references for concrete constitutive theory.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Bedaso Ahmed ◽  
Kefiyalew Zerfu ◽  
Elmer C. Agon

Slender reinforced concrete column may fail in material failure or instability failure. Instability failure is a common problem which cannot be analyzed with first-order analysis. So, second-order analysis is required to analyze instability failure of slender RC column. The main objective of this study was to construct uniaxial interaction diagram for slender reinforced concrete column based on nonlinear finite element analysis (FEA) software. The key parameters which were studied in this study were eccentricity, slenderness ratio, steel ratio, and shape of the column. Concrete damage plasticity (CDP) was utilized in modeling the concrete. Material nonlinearity, geometric nonlinearity, effect of cracking, and tension stiffening effect were included in the modeling. The results reveal that, as slenderness ratio increases, the balanced moment also increases, but the corresponding axial load was decreased. However, increasing the amount of steel reinforcement to the column increases the stability of the column and reduces the effect of slenderness ratio. Also, the capacity of square slender RC column is larger than rectangular slender RC column with equivalent cross section. However, the result is close to each other as slenderness ratio increased. Finally, validation was conducted by taking a benchmark experiment, and it shows that FEA result agrees with the experimental by 85.581%.


The composite structural element under study is a carbon fiber wrapped, steel I section reinforced concrete column. The wrapped CFRP is under tension and reinforced concrete under radial compression. The aim of the research is to determine the behavior of the composite structural element under axial loads. The Stress-strain characteristics and load bearing capacity of control and CFRP wrapped tubular columns were determined experimentally. Further, Finite element analysis of steel, reinforced concrete and CFRP wrapped concrete columns sections, was conducted using ANSYS Workbench 15.0 software. The experimental and analytical results were compared.


2008 ◽  
Vol 33-37 ◽  
pp. 663-668
Author(s):  
Quan Sheng Liu ◽  
Bin Liu ◽  
Wei Gao

This paper introduces the principle of minimum energy dissipation and its general procedures to establish development equation of internal variable. With the accepted viewpoint that the damage is only mechanics of energy dissipation during the rockburst and utilizing the total strength criterion based on released strain energy, the general damage evolution equation is deduced. Compared with the traditional research method of damage evolution equation, this method has universal and objective characteristics.


2009 ◽  
Vol 610-613 ◽  
pp. 831-837
Author(s):  
Mei Juan Song ◽  
Ling Yun Wang ◽  
Rao Chuan Liu ◽  
Zhi Xiang Wang

After superplastic tensile tests and quantitative analysis of cavity volume fraction, the damage evolution equation based on the law of the micro-damage evolution and statistical mechanics was derived out. The characteristic parameters of damage evolvement and critical value of damage variables are achieved from the experiments.


2011 ◽  
Vol 20 (8) ◽  
pp. 1243-1262 ◽  
Author(s):  
M. Jie ◽  
C. L. Chow ◽  
X. Wu

A method of forming limit prediction for sheet metals at high temperatures and under nonproportional loading is presented. The method takes into account the strain-softening behaviors of the material at elevated temperatures. A localized necking criterion based on an isotropic damage-coupled acoustic tensor is developed and employed to determine the forming limits of strain-softening materials. The damage evolution equation is developed within the thermo-mechanical framework. A closed-form expression of the forming limit strains is derived by coupling the damage evolution equation into the localized necking criterion. A computer program, incorporating the incremental theory of plasticity, the damage evolution equation and the localized necking criterion, is developed to compute the forming limit strains under several nonproportional loading paths. A series of the uniaxial tensile tests is performed to measure the relevant mechanical properties of AA6061 at the elevated temperature of 450°C. The material damage variables are determined from the measured elastic modulii from a series of loading and unloading paths. The damage evolution equation of AA6061 at 450°C is formulated based on the test data. The computed limit strains are compared with the test results under various loading paths and a good agreement is observed. It is found that the critical damage value is independent on the stress states and loading paths. It may be concluded that the application of the material damage as a reliable criterion of localized necking including the nonproportional loading cases.


Sign in / Sign up

Export Citation Format

Share Document