A demonstration test of the dual-beam polarimetry differential imaging system for the high-contrast observation

2012 ◽  
Author(s):  
Jiangpei Dou ◽  
Deqing Ren ◽  
Yongtian Zhu ◽  
Xue Wang ◽  
Xi Zhang ◽  
...  
2018 ◽  
Vol 14 (S345) ◽  
pp. 241-243
Author(s):  
Gesa H.-M. Bertrang ◽  
Henning Avenhaus

AbstractIn Bertrang et al. (2018), we present new data of the protoplanetary disk surrounding the Herbig Ae/Be star HD 169142 obtained in the very broad-band (VBB) with the Zurich imaging polarimeter (ZIMPOL), a subsystem of the Spectro-Polarimetric High-contrast Exoplanet REsearch instrument (SPHERE) at the Very Large Telescope (VLT). Our Polarimetric Differential Imaging (PDI) observations probe the disk as close as 0.″3 (3.5au) to the star and are able to trace the disk out to ~1.″08 (~126 au). We find an inner hole, a bright ring bearing substructures around ~0.″18 (21au), and an elliptically shaped gap stretching from 0.″25 to 0.″47 (29–55 au). Outside of 0.″47, the surface brightness drops off, discontinued only by a narrow annular brightness minimum at ~0.″63–0.″74 (74–87 au). These observations confirm features found in less-well resolved data as well as reveal yet undetected indications for planet-disk interactions, such as small-scale structures, star-disk offsets, and potentially moving shadows.


2014 ◽  
Vol 4 (1) ◽  
pp. 427-432
Author(s):  
Daniela Berritto ◽  
Francesca Iacobellis ◽  
Maria Paola Belfiore ◽  
Michele La Porta ◽  
Roberto Grassi

Photoacoustic imaging is an emerging modality that exploits the photoacoustic effect to combine the high contrast of optical imaging with the spatial resolution and penetration depth of ultrasound. A key feature of PA imaging methods is that they exploit optical contrast but employ US detection principles. The PA effect offers a way to take advantage of the ability of light to penetrate into the body and let us defeat light diffusion by using US waves to “see” the penetrating light. The main advantage of this hybrid approach is that the optical properties of biological tissue, including high contrast and spectral specificity, are encoded in an ultrasound signal. Resolutions of better than 1 mm can be obtained at depths measured in centimeters (up to 7) and not in millimeters, depending on the laser wavelength and transducer frequency used, opening up entirely new regimens of “optical imaging.” From a clinical standpoint, PA imaging is complementary in nature and synergetic with US and a combined US and PA imaging system can be easily implemented due to the presence of a shared detector and associated electronics. Furthermore, such a system will be readily accepted by clinicians familiar with US imaging.


2018 ◽  
Vol 617 ◽  
pp. A144 ◽  
Author(s):  
H. J. Hoeijmakers ◽  
H. Schwarz ◽  
I. A. G. Snellen ◽  
R. J. de Kok ◽  
M. Bonnefoy ◽  
...  

Context. Angular differential imaging (ADI) and spectral differential imaging (SDI) are well-established high-contrast imaging techniques, but their application is challenging for companions at small angular separations from their host stars. Aims. The aim of this paper is to investigate to what extent adaptive-optics assisted, medium-resolution (R ~ 5000) integral field spectrographs (IFS) can be used to directly detect the absorption of molecular species in the spectra of planets and substellar companions when these are not present in the spectrum of the star. Methods. We analysed archival data of the β Pictoris system taken with the SINFONI integral field spectrograph located at ESO’s Very Large Telescope, originally taken to image β Pictoris b using ADI techniques. At each spatial position in the field, a scaled instance of the stellar spectrum is subtracted from the data after which the residuals are cross-correlated with model spectra. The cross-correlation co-adds the individual absorption lines of the planet emission spectrum constructively, while this is not the case for (residual) telluric and stellar features. Results. Cross-correlation with CO and H2O models results in significant detections of β Pictoris b with signal-to-noise ratios (S/Ns) of 13.7 and 16.4 respectively. Correlation with a T = 1700 K BT-Settl model provides a detection with an S/N of 22.8. This in contrast to application of ADI, which barely reveals the planet. While the adaptive optics system only achieved modest Strehl ratios of 19–27% leading to a raw contrast of 1:240 at the planet position, cross-correlation achieves a 3σ contrast limit of 2.7 × 10−5 in this 2.5 hr data set, a factor ~40 below the raw noise level at an angular distance of 0.36′′ from the star. Conclusions. Adaptive-optics assisted, medium-resolution IFS, such as SINFONI on the VLT and OSIRIS on the Keck Telescope, can be used for high-contrast imaging utilizing cross-correlation techniques for planets that are close to their star and embedded in speckle noise. We refer to this method as molecule mapping, and advocate its application to observations with future medium resolution instruments, in particular ERIS on the VLT, HARMONI on the ELT and NIRSpec, and MIRI on the JWST.


2019 ◽  
Vol 622 ◽  
pp. A192 ◽  
Author(s):  
N. Engler ◽  
A. Boccaletti ◽  
H. M. Schmid ◽  
J. Milli ◽  
J.-C. Augereau ◽  
...  

Context. High-contrast instruments like SPHERE (Spectro- Polarimetric High-contrast Exoplanet REsearch) enable spatial resolution of young planetary systems and allow us to study the connection between planets and the dust contained in debris discs by the gravitational influence a planet can have on its environment. Aims. We present new observations of the edge-on debris disc around HD 15115 (F star at 48.2 pc) obtained in the near-IR. We search for observational evidence for a second inner planetesimal ring in the system. Methods. We obtained total intensity and polarimetric data in the broad bands J and H and processed the data with differential imaging techniques achieving an angular resolution of about 40 mas. A grid of models describing the spatial distribution of the grains in the disc is generated to constrain the geometric parameters of the disc and to explore the presence of a second belt. We perform a photometric analysis of the data and compare disc brightness in two bands in scattered and in polarized light. Results. We observe an axisymmetric planetesimal belt with a radius of ~2′′, an inclination of 85.8° ± 0.7° and position angle of 278.9° ± 0.1°. The photometric analysis shows that the west side is ~2.5 times brighter in total intensity than the east side in both bands, while for polarized light in the J band this ratio is only 1.25. We also find that the J–H colour of the disc appears to be red for the radial separations r ≲ 2′′ and is getting bluer for the larger separations. The maximum polarization fraction is 15–20% at r ~ 2.5′′. The polarized intensity image shows some structural features inside the belt which can be interpreted as an additional inner belt. Conclusions. The apparent change of disc colour from red to blue with an increasing radial separation from the star could be explained by the decreasing average grain size with distance. The presence of an inner belt slightly inclined with respect to the main planetesimal belt is suspected from the data but the analysis and modelling presented here cannot establish a firm conclusion due to the faintness of the disc and its high inclination.


2009 ◽  
Vol 121 (881) ◽  
pp. 716-727 ◽  
Author(s):  
Beth Biller ◽  
John Trauger ◽  
Dwight Moody ◽  
Laird Close ◽  
Andreas Kuhnert ◽  
...  

2020 ◽  
Author(s):  
Clifton G. Scarboro ◽  
Stephanie M. Ruzsa ◽  
Colleen J. Doherty ◽  
Michael W. Kudenov

AbstractGray mold disease caused by the fungus Botrytis cinerea damages many crop hosts worldwide and is responsible for heavy economic losses. Early diagnosis and detection of the disease would allow for more effective crop management practices to prevent outbreaks in field or greenhouse settings. Furthermore, having a simple, non-invasive way to quantify the extent of gray mold disease is important for plant pathologists interested in quantifying infection rates. In this paper, we design and build a multispectral imaging system for discriminating between leaf regions, infected with gray mold, and those that remain unharmed on a lettuce (Lactuca spp.) host. First, we describe a method to select two optimal (high contrast) spectral bands from continuous hyperspectral imagery (450-800 nm). We then built a system based on these two spectral bands, located at 540 and 670 nm. The resultant system uses two cameras, with a narrow band-pass spectral filter mounted on each, to measure the multispectral reflectance of a lettuce leaf. The two resulting images are combined using a normalized difference calculation that produces a single image with high contrast between the leaves’ infected and healthy regions. A classifier was then created based on the thresholding of single pixel values. We demonstrate that this simple classification produces a true positive rate of 95.25% with a false positive rate of 9.316%.


2013 ◽  
Vol 8 (S299) ◽  
pp. 21-25
Author(s):  
Anne-Lise Maire ◽  
Anthony Boccaletti ◽  
Julien Rameau ◽  
Gaël Chauvin ◽  
Anne-Marie Lagrange ◽  
...  

AbstractSpectral differential imaging (SDI) is part of the observing strategy of current and on-going high-contrast imaging instruments on ground-based telescopes. Although it improves the star light rejection, SDI attenuates the signature of off-axis companions to the star, just like angular differential imaging (ADI). However, the attenuation due to SDI has the peculiarity of being dependent on the spectral properties of the companions. To date, no study has investigated these effects. Our team is addressing this problem based on data from a direct imaging survey of 16 stars combining the phase-mask coronagraph, the SDI and the ADI modes of VLT/NaCo. The objective of the survey is to search for cool (Teff<1000-1300 K) giant planets at separations of 5-10 AU orbiting young, nearby stars (<200 Myr, <25 pc). The data analysis did not yield any detections. As for the estimation of the sensivity limits of SDI-processed images, we show that it requires a different analysis than that used in ADI-based surveys. Based on a method using the flux predictions of evolutionary models and avoiding the estimation of contrast, we determine directly the mass sensivity limits of the survey for the ADI processing alone and with the combination of SDI and ADI. We show that SDI does not systematically improve the sensitivity due to the spectral properties and self-subtraction of point sources.


2011 ◽  
Vol 19 (6) ◽  
pp. 4957 ◽  
Author(s):  
Kaito Yokochi ◽  
Naoshi Murakami ◽  
Jun Nishikawa ◽  
Lyu Abe ◽  
Motohide Tamura ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document