Laser Diagnostics Of Nascent Gaseous Product Species Formed In Chemical Reactions On Surfaces

Author(s):  
David S. Hsu
2017 ◽  
Vol 114 ◽  
pp. 1319-1324 ◽  
Author(s):  
Y. Deguchi ◽  
R. Muranaka ◽  
T. Kamimoto ◽  
T. Takagi ◽  
S. Kikuchi ◽  
...  

2021 ◽  
pp. 1-34
Author(s):  
Yaochi Wei ◽  
Christopher Michael Miller ◽  
Daniel Olsen ◽  
Min Zhou

Abstract The ignition threshold of an energetic material (EM) quantifies the macroscopic conditions for the onset of self-sustaining chemical reactions. The threshold is an important theoretical and practical measure of material attributes that relate to safety and reliability. Historically, the thresholds are measured experimentally. Here, we present a new Lagrangian computational framework for establishing the probabilistic ignition thresholds of heterogeneous EM out of the evolutions of coupled mechanical-thermal-chemical processes using mesoscale simulations. The simulations explicitly account for microstructural heterogeneities, constituent properties, and interfacial processes and capture processes responsible for the development of material damage and the formation of hotspots in which chemical reactions initiate. The specific mechanisms tracked include viscoelasticity, viscoplasticity, fracture, post-fracture contact, frictional heating, heat conduction, reactive chemical heating, gaseous product generation, and convective heat transfer. To determine the ignition threshold, the minimum macroscopic loading required to achieve self-sustaining chemical reactions with rate of reactive heat generation exceeding the rate of heat loss due to conduction and other dissipative mechanisms is determined. Probabilistic quantification of the processes and the thresholds are obtained via the use of statistically equivalent microstructure samples sets (SEMSS). The predictions are in agreement with available experimental data.


Author(s):  
H.H. Rotermund

Chemical reactions at a surface will in most cases show a measurable influence on the work function of the clean surface. This change of the work function δφ can be used to image the local distributions of the investigated reaction,.if one of the reacting partners is adsorbed at the surface in form of islands of sufficient size (Δ>0.2μm). These can than be visualized via a photoemission electron microscope (PEEM). Changes of φ as low as 2 meV give already a change in the total intensity of a PEEM picture. To achieve reasonable contrast for an image several 10 meV of δφ are needed. Dynamic processes as surface diffusion of CO or O on single crystal surfaces as well as reaction / diffusion fronts have been observed in real time and space.


Author(s):  
Anthony S-Y Leong ◽  
David W Gove

Microwaves (MW) are electromagnetic waves which are commonly generated at a frequency of 2.45 GHz. When dipolar molecules such as water, the polar side chains of proteins and other molecules with an uneven distribution of electrical charge are exposed to such non-ionizing radiation, they oscillate through 180° at a rate of 2,450 million cycles/s. This rapid kinetic movement results in accelerated chemical reactions and produces instantaneous heat. MWs have recently been applied to a wide range of procedures for light microscopy. MWs generated by domestic ovens have been used as a primary method of tissue fixation, it has been applied to the various stages of tissue processing as well as to a wide variety of staining procedures. This use of MWs has not only resulted in drastic reductions in the time required for tissue fixation, processing and staining, but have also produced better cytologic images in cryostat sections, and more importantly, have resulted in better preservation of cellular antigens.


Author(s):  
David R. Veblen

Extended defects and interfaces control many processes in rock-forming minerals, from chemical reactions to rock deformation. In many cases, it is not the average structure of a defect or interface that is most important, but rather the structure of defect terminations or offsets in an interface. One of the major thrusts of high-resolution electron microscopy in the earth sciences has been to identify the role of defect fine structures in reactions and to determine the structures of such features. This paper will review studies using HREM and image simulations to determine the structures of defects in silicate and oxide minerals and present several examples of the role of defects in mineral chemical reactions. In some cases, the geological occurrence can be used to constrain the diffusional properties of defects.The simplest reactions in minerals involve exsolution (precipitation) of one mineral from another with a similar crystal structure, and pyroxenes (single-chain silicates) provide a good example. Although conventional TEM studies have led to a basic understanding of this sort of phase separation in pyroxenes via spinodal decomposition or nucleation and growth, HREM has provided a much more detailed appreciation of the processes involved.


Sign in / Sign up

Export Citation Format

Share Document