WE-FG-206-04: Comprehensive Evaluation of Left Ventricular (LV) Filling and Ejection Using High Frame Rate Cine MR Imaging: Key Technical and Methodological Requirements

2016 ◽  
Vol 43 (6Part41) ◽  
pp. 3831-3831
Author(s):  
J Zhang ◽  
B Cheong ◽  
A Pednekar ◽  
C Arena ◽  
D Dees ◽  
...  
Author(s):  
Jason Voorneveld ◽  
Lana B.H. Keijzer ◽  
Mihai Strachinaru ◽  
Daniel J. Bowen ◽  
Ferit O. Mutluer ◽  
...  

Author(s):  
Kana Fujikura ◽  
Mohammed Makkiya ◽  
Muhammad Farooq ◽  
Yun Xing ◽  
Wayne Humphrey ◽  
...  

Background: global longitudinal strain (GLS) measures myocardial deformation and is a sensitive modality for detecting subclinical myocardial dysfunction and predicting cardiac outcomes. The accuracy of speckle-tracking echocardiography (STE) is dependent on temporal resolution. A novel software enables relatively high frame rate (Hi-FR) (~200 fps) echocardiographic images acquisition which empowers us to investigate the impact of Hi-FR imaging on GLS analysis. The goal of this pilot study was to demonstrate the feasibility of Hi-FR for STE. Methods: In this prospective study, we acquired echocardiographic images using clinical scanners on patients with normal left ventricular systolic function using Hi-FR and conventional frame rate (Reg-FR) (~50 FPS). GLS values were evaluated on apical 4-, 2- and 3-chamber images acquired in both Hi-FR and Reg-FR. Inter-observer and intra-observer variabilities were assessed in Hi-FR and Reg-FR. Results: There were 143 resting echocardiograms with normal LVEF included in this study. The frame rate of Hi-FR was 190 ± 25 and Reg-FR was 50 ± 3, and the heart rate was 71 ± 13. Strain values measured in Hi-FR were significantly higher than those measured in Reg-FR (all p < 0.001). Inter-observer and intra-observer correlations were strong in both Hi-FR and Reg-FR. Conclusions: We demonstrated that strain values were significantly higher using Hi-FR when compared with Reg-FR in patients with normal LVEF. It is plausible that higher temporal resolution enabled the measurement of myocardial strain at desired time point. The result of this study may inform clinical adoption of the novel technology. Further investigations are necessary to evaluate the value of Hi-FR to assess myocardial strain in stress echocardiography in the setting of tachycardia.


2019 ◽  
Vol 40 (Supplement_1) ◽  
Author(s):  
M Cvijic ◽  
P Santos ◽  
A M Petrescu ◽  
S Bezy ◽  
M Orlowska ◽  
...  

Abstract Background Cardiac shear wave (SW) elastography is a novel technique based on high-frame-rate (HFR) echocardiography which has been shown to be related to myocardial stiffness. In this study we explore the relation between myocardial SW velocity and myocardial remodelling in remodelled hearts of patients with arterial hypertension (AH). Methods We prospectively included 33 treated AH patients with hypertrophic left ventricular (LV) remodelling (59±14 years, 55% male) and 26 aged matched healthy controls (55±15 years, 77% male). AH patients were further divided according to their LV geometric pattern into a concentric remodelling (CR) group (13 patients) and a concentric hypertrophy (CH) group (20 patients). LV parasternal long axis views were acquired with an experimental HFR ultrasound scanner (HD-PULSE) at 1266±317 frames per seconds. Myocardial acceleration maps were created from the HFR-datasets and an anatomical M-mode line was drawn along the midline of the interventricular septum (IVS). The propagation velocity of natural SWs occurring at mitral valve closure (MVC) was measured on these M-modes (Figure A) in order to assess passive myocardial stiffness. Standard echocardiography using a commercial scanner was performed to evaluate LV remodelling. Results SW velocities at MVC differed significantly between AH patients and controls (5.83±1.20 m/s vs. 4.04±0.96 m/s; p<0.001). Within the patient group, patients with CH had highest SW velocities at MVC (p<0.001), whereas values between controls and patients with CR were comparable (p=0.075) (Figure B). In AH patients, significant positive correlations were found between SW velocity at MVC and parameters of LV remodelling (IVS thickness: r=0.728, p<0.001; LV mass index: r=0.780, p<0.001, LV end-diastolic volume: r=0.604, p=0.008) (Figure C) and also parameters of diastolic function (E/e': r=0.495, p=0.005, left atrium diameter: r=0.866, p<0.001, left atrium volume index: r=0.661, p<0.001). Figure A, B, C Conclusions SW velocity – and therefore myocardial stiffness – is higher in AH patients compared to healthy controls and increases with increasing severity of hypertensive heart disease. Patients with concentric remodelling have still close-to-normal passive myocardial properties while patients with concentric hypertrophy show significant stiffening. Echocardiographic shear wave elastography is a promising new technique for the non-invasive assessment of myocardial stiffness and might provide valuable new insights into myocardial function and the pathophysiology of myocardial disease.


Author(s):  
Jason Voorneveld ◽  
Aswin Muralidharan ◽  
Timothy Hope ◽  
Hendrik Vos ◽  
Pieter Kruizinga ◽  
...  

Radiology ◽  
1987 ◽  
Vol 163 (3) ◽  
pp. 697-702 ◽  
Author(s):  
U Sechtem ◽  
P W Pflugfelder ◽  
R G Gould ◽  
M M Cassidy ◽  
C B Higgins

Sign in / Sign up

Export Citation Format

Share Document