Compressed air supply system of vibro‐isolated tools

1992 ◽  
Vol 91 (5) ◽  
pp. 3083-3083
Author(s):  
Marian W. Dobry ◽  
Czeslaw Cempel ◽  
Wieslaw Garbatowski
1955 ◽  
Vol 74 (8) ◽  
pp. 646-649
Author(s):  
J. E. Schrameck

2020 ◽  
Vol 24 (2 Part A) ◽  
pp. 713-722
Author(s):  
Maran Punnaivanam ◽  
Arumugam Krishnan

In the present work, straight sunflower oil and rice bran oil blended with diesel have been used as fuel diesel in a mini boiler. The thermal efficiency of the boiler and emission levels in the exhaust gases have been investigated by burning the oil blends of varying proportions ranging from 0-50%. An additional air supply system and compressed air atomization of fuel with a new burner have been used to improve the thermal efficiency of the mini boiler. Results revealed that the addi?tional air supply improved the thermal efficiency up-to 7% and reduced the CO and HC emission up-to 40%. The use of compressed air atomization further increased the thermal efficiency up-to 4% and reduced the CO and HC emission up-to 70%.


2021 ◽  
Vol 14 (2) ◽  
pp. 108-114
Author(s):  
Y. M. Brodov ◽  
L. V. Plotnikov ◽  
K. O. Desyatov

A method of thermomechanical improvement of pulsating air flows in the intake system of a turbocharged piston engine is described. The main objective of this study is to develop a method for suppressing the rate of heat transfer to improve the reliability of a piston turbocharged engine. A brief review of the literature on improving the reliability of piston engines is given. Scientific and technical results were obtained on the basis of experimental studies on a full-scale model of a piston engine. The hot-wire anemometer method was used to obtain gas-dynamic and heatexchange characteristics of gas flows. Laboratory stands and instrumentation facilities are described in the article. The data on gas dynamics and heat exchange of stationary and pulsating air flows in gas-dynamic systems of various configurations as applied to the air supply system of a turbocharged piston engine are presented. A method of thermomechanical improvement of flows in the intake system of an engine based on a honeycomb is proposed in order to stabilize the pulsating flow and suppress the intensity of heat transfer. Data were obtained on the air flow rate and the local heat transfer coefficient both in the exhaust duct of the turbocharger compressor (i.e., without a piston engine) and in the intake system of a supercharged engine. A comparative analysis of the data has been carried out. It was found that the installation of a leveling grid in the exhaust channel of a turbocharger leads to an intensification of heat transfer by an average of 9%. It was found that the presence of a leveling grid in the intake system of a piston engine causes the suppression of heat transfer within 15% in comparison with the baseline values. It is shown that the use of a modernized intake system in a diesel engine increases its probability of failure-free operation by 0.8%. The data obtained can be extended to other types and designs of air supply systems for heat engines.


Energies ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7825
Author(s):  
Pradeep Shakya ◽  
Gimson Ng ◽  
Xiaoli Zhou ◽  
Yew Wah Wong ◽  
Swapnil Dubey ◽  
...  

A hybrid cooling system which combines natural ventilation with a radiant cooling system for a hot and humid climate was studied. Indirect evaporative cooling was used to produce chilled water at temperatures slightly higher than the dew point. With this hybrid system, the condensation issue on the panel surface of a chilled ceiling was overcome. A computational fluid dynamics (CFD) model was employed to determine the cooling load and the parameters required for thermal comfort analysis for this hybrid system in an office-sized, well-insulated test room. Upon closer investigation, it was found that the thermal comfort by the hybrid system was acceptable only in limited outdoor conditions. Therefore, the hybrid system with a secondary fresh air supply system was suggested. Furthermore, the energy consumptions of conventional all-air, radiant cooling, and hybrid systems including the secondary air supply system were compared under similar thermal comfort conditions. The predicted results indicated that the hybrid system saves up to 77% and 61% of primary energy when compared with all-air and radiant cooling systems, respectively, while maintaining similar thermal comfort.


Sign in / Sign up

Export Citation Format

Share Document