A slightly inhomogeneous surface wave in a two‐layered medium involving an isotropic layer and weakly anisotropic half‐space

1993 ◽  
Vol 94 (6) ◽  
pp. 3295-3301
Author(s):  
Yuriy A. Rossikhin ◽  
Marina V. Shitikova
2016 ◽  
pp. 3564-3575 ◽  
Author(s):  
Ara Sergey Avetisyan

The efficiency of virtual cross sections method and MELS (Magneto Elastic Layered Systems) hypotheses application is shown on model problem about distribution of wave field in thin surface layers of waveguide when plane wave signal is propagating in it. The impact of surface non-smoothness on characteristics of propagation of high-frequency horizontally polarized wave signal in isotropic elastic half-space is studied. It is shown that the non-smoothness leads to strong distortion of the wave signal over the waveguide thickness and along wave signal propagation direction as well.  Numerical comparative analysis of change in amplitude and phase characteristics of obtained wave fields against roughness of weakly inhomogeneous surface of homogeneous elastic half-space surface is done by classical method and by proposed approach for different kind of non-smoothness.


1971 ◽  
Vol 38 (4) ◽  
pp. 899-905 ◽  
Author(s):  
L. B. Freund

Three-dimensional wave propagation in an elastic half space is considered. The half space is traction free on half its boundary, while the remaining part of the boundary is free of shear traction and is constrained against normal displacement by a smooth, rigid barrier. A time-harmonic surface wave, traveling on the traction free part of the surface, is obliquely incident on the edge of the barrier. The amplitude and the phase of the resulting reflected surface wave are determined by means of Laplace transform methods and the Wiener-Hopf technique. Wave propagation in an elastic half space in contact with two rigid, smooth barriers is then considered. The barriers are arranged so that a strip on the surface of uniform width is traction free, which forms a wave guide for surface waves. Results of the surface wave reflection problem are then used to geometrically construct dispersion relations for the propagation of unattenuated guided surface waves in the guiding structure. The rate of decay of body wave disturbances, localized near the edges of the guide, is discussed.


2020 ◽  
Vol 13 (13) ◽  
Author(s):  
Bishwanath Prasad ◽  
Santimoy Kundu ◽  
Prakash Chandra Pal ◽  
Parvez Alam
Keyword(s):  

2012 ◽  
Vol 268-270 ◽  
pp. 1619-1622 ◽  
Author(s):  
Li Li ◽  
Yi Wen Wei ◽  
P.J. Wei

the piezoelectric and piezomagnetic effects and the influence of short and open circuit on the surface wave speed are investigated in this paper. First, the elastic, piezoelectric and piezomagnetic coefficients in the considered ordinate system are obtained by Bonde transformation from that in the crystal axes ordinate system. Then, the equation which surface wave speed satisfies is derived from the free traction condition on the surface of piezoelectric and piezomagnetic half space with consideration of short and open circuit case. Some numerical examples are given and the piezoelectric and piezomagnetic effects and the influence of short and open circuit on the surface wave speed are shown graphically.


2019 ◽  
Vol 10 (1) ◽  
pp. 69-79
Author(s):  
A. R. Baev ◽  
A. L Mayorov ◽  
N. V. Levkovich ◽  
M. V. Asadchaya

The propagation of a pulsed signal of a surface wave over an object with a non-uniform surface layer, obtained, for example, as a result of surface hardening, with structural damage, is accompanied by the dispersion of the velocity of the wave carrying important information about the parameters of such a layer. The aim of the work is to study the relationship between the acoustic parameters of a pulsed acoustic signal of a surface and subsurface waves and the surface layer of steel specimens hardened by high-frequency hardening, and gray iron-chill. Features of the surface and subsurface waves application for ultrasonic evaluation of physicomechanical properties of solids. Strenghtned inhomogeneous surface layer.A brief analysis of the known works on determining the depth of hardened surface layers by various methods, including high-frequency hardening, cementation, etc., is carried out. Based on the Oulder integral expression. The dependence connecting the wave velocity, its frequency, the depth of the hardened layer and the spatial distribution of hardness represented as a step with a changing slope of its side surface simulating the transition zone of the hardened layer are calculated.Using the pulse method and low-aperture transducers with a frequency of 1−3.8 MHz, the dependences of the surface wave velocity on the cutting height of a layer hardened by HDTV hardening are obtained. A comparison of experimental data and calculations of the theoretical model showed a good qualitative correspondence between them, demonstrate a high «sensitivity» of the method in relation to the nature of the change in hardness over the depth of the hardened layer. It is shown that the proposed approach is promising for solving the inverse problem of restoring the spatial distribution of hardness based on experimental data.The goniometric method was approbated to determine the dependence between amplitude-angle characteristics and depth of the surface steel layers hardened by high-frequency hardening and depth of hardened gray iron specimens layer – with chill. It is shown that the optimal angle corresponding maximum of excited surface wave amplitude in steel specimens is decreasing up to 24–26'vs. hardened depth layer. But when the tested specimens from cast iron this angle decreasing is nearly of 6°. Recommendations on the use of research results in practice are given.


2018 ◽  
Vol 29 (18) ◽  
pp. 3582-3597 ◽  
Author(s):  
Manoj Kumar Singh ◽  
Sanjeev A Sahu ◽  
Abhinav Singhal ◽  
Soniya Chaudhary

In mathematical physics, the Wentzel–Kramers–Brillouin approximation or Wentzel–Kramers–Brillouin method is a technique for finding approximate solutions to linear differential equations with spatially varying coefficients. An attempt has been made to approximate the velocity of surface seismic wave in a piezo-composite structure. In particular, this article studies the dispersion behaviour of Love-type seismic waves in functionally graded piezoelectric material layer bonded between initially stressed piezoelectric layer and pre-stressed piezoelectric half-space. In functionally graded piezoelectric material stratum, theoretical derivations are obtained by the Wentzel–Kramers–Brillouin method where variations in material gradient are taken exponentially. In the upper layer and lower half-space, the displacement components are obtained by employing separation of variables method. Dispersion equations are obtained for both electrically open and short cases. Numerical example and graphical manifestation have been provided to illustrate the effect of influencing parameters on the phase velocity of considered surface wave. Obtained relation has been deduced to some existing results, as particular case of this study. Variation in cut-off frequency and group velocity against the wave number are shown graphically. This study provides a theoretical basis and practical utilization for the development and construction of surface acoustics wave devices.


Sign in / Sign up

Export Citation Format

Share Document