A comprehensive water tunnel test of a horizontal axis marine hydrokinetic turbine for model validation and verification

2014 ◽  
Vol 135 (4) ◽  
pp. 2273-2273
Author(s):  
Arnie A. Fontaine ◽  
Ted G. Bagwell ◽  
Michael L. Johnson ◽  
Dean Capone
Author(s):  
Michael R. Motley ◽  
Ramona B. Barber

As the need for clean and renewable energy becomes greater, alternative energy technologies are becoming more and more prevalent. To that end, there has been a recent increase in research on marine hydrokinetic turbines to assess their potential as a reliable source of energy production and to expedite their implementation. These turbines are typically constructed from fiber reinforced composites and are subject to large, dynamic fluid forces. One of the benefits of composite materials is that the bend-twist deformation behavior can be hydroelastically tailored such that the blades are able to passively change their pitch to adapt to the surrounding flow, creating a nearly instantaneous control mechanism that can improve system performance over the expected range of operating conditions. These improvements include increasing energy capture, reducing instabilities, and improving structural performance. Practical constraints, however, lead to limitations in the scope of these performance enhancements and create tradeoffs between various benefits that can be achieved. This paper presents a numerical investigation into the capability of passive pitch control and combined active/passive pitch control to modify the performance of horizontal axis marine turbines with proper consideration of practical restrictions.


2021 ◽  
Vol 222 ◽  
pp. 108584
Author(s):  
Jorge Sandoval ◽  
Karina Soto-Rivas ◽  
Clemente Gotelli ◽  
Cristián Escauriaza

2019 ◽  
Vol 7 (12) ◽  
pp. 465 ◽  
Author(s):  
Zhigao Dang ◽  
Zhaoyong Mao ◽  
Baowei Song ◽  
Wenlong Tian

Operating horizontal axis hydrokinetic turbine (HAHT) generates noise affecting the ocean environment adversely. Therefore, it is essential to determine the noise characteristics of such types of HAHT, as large-scale turbine sets would release more noise pollution to the ocean. Like other rotating machinery, the hydrodynamic noise generated by the rotating turbine has been known to be the most important noise source. In the present work, the transient turbulent flow field of the HAHT is obtained by incompressible large eddy simulation, thereafter, the Ffowcs Williams and Hawkings acoustic analogy formulation is carried out to predict the noise generated from the pressure fluctuations of the blade surface. The coefficient of power is compared with the experimental results, with a good agreement being achieved. It is seen from the pressure contours that the 80% span of the blade has the most severe pressure fluctuations, which concentrate on the region of leading the edge of the airfoil and the suction surface of the airfoil. Then, the noise characteristics around a single turbine are systematically studied, in accordance with the results of the flow field. The noise characteristics around the whole turbine are also investigated to determine the directionality of the noise emission of HAHT.


2016 ◽  
Vol 62 ◽  
pp. 104-135 ◽  
Author(s):  
Jesús J. López-Fernández ◽  
Esther Guerra ◽  
Juan de Lara

Sign in / Sign up

Export Citation Format

Share Document