Intrasubject Variability of Upper Extremity Angular Kinematics in the Tennis Forehand Drive

1990 ◽  
Vol 6 (4) ◽  
pp. 415-421 ◽  
Author(s):  
Duane V. Knudson

The intra subject variability of the angular kinematics of the wrist and elbow joints in the tennis forehand drive were studied. Two varsity tennis players were filmed as they performed flat forehand drives. The DLT method of 3-D reconstruction was used to measure the angular motion of the upper extremity for eight strokes to assess the intra subject variability of selected kinematic variables. Curves were synchronized to impact and averaged. Wrist and elbow angular position data were quite consistent, with curve coefficients of variation (CV) less than 5.9%. The consistent angular positions during the forward stroke did not result from highly consistent patterns of angular velocities or accelerations. For both the wrist and elbow joints, intra subject variability increased for the angular velocity (CV = 90.6%) and angular acceleration (CV = 129.5%) curves. Biomechanical studies comparing derivatives or kinetic variables across subjects may have to be interpreted with reference to intra subject variability.

1989 ◽  
Vol 5 (3) ◽  
pp. 324-331 ◽  
Author(s):  
Duane V. Knudson ◽  
Scott C. White

Two force sensing resistor force transducers were utilized to measure the forces on the hand of seven skilled tennis players performing the tennis forehand drive. Repeatable gripping force patterns were recorded for the subjects given the experimental protocol used for the study. The magnitude of the peak postimpact force on the hand was highly variable, ranging from 4 to 309 N, and was found to be related to high-frequency vibrations of the racket. There was less variability in the magnitude of preimpact gripping forces, indicating that the subjects utilized a consistent gripping pattern in preparation for impact. The large within- and between-subject variability of postimpact forces warrant further study in order to establish the range of loadings in tennis play that may be related to overuse injuries.


Author(s):  
Vishesh Vikas ◽  
Carl D. Crane

Knowledge of joint angles, angular velocities is essential for control of link mechanisms and robots. The estimation of joint angles and angular velocity is performed using combination of inertial sensors (accelerometers and gyroscopes) which are contactless and flexible at point of application. Different estimation techniques are used to fuse data from different inertial sensors. Bio-inspired sensors using symmetrically placed multiple inertial sensors are capable of instantaneously measuring joint parameters (joint angle, angular velocities and angular acceleration) without use of any estimation techniques. Calibration of inertial sensors is easier and more reliable for accelerometers as compared to gyroscopes. The research presents gyroscope-less, multiple accelerometer and magnetometer based sensors capable of measuring (not estimating) joint parameters. The contribution of the improved sensor are four-fold. Firstly, the inertial sensors are devoid of symmetry constraint unlike the previously researched bio-inspired sensors. However, the accelerometer are non-coplanarly placed. Secondly, the accelerometer-magnetometer combination sensor allows for calculation of a unique rotation matrix between two link joined by any kind of joint. Thirdly, the sensors are easier to calibrate as they consist only of accelerometers. Finally, the sensors allow for calculation of angular velocity and angular acceleration without use of gyroscopes.


1975 ◽  
Vol 97 (3) ◽  
pp. 795-799 ◽  
Author(s):  
J. A. Smith

Generalized closed-form expressions are presented for the analysis of angular and path position and dynamic state properties of an n link mechanism with single or multiple prescribed input specifications. The complex conjugate concept is extensively used to formulate these explicit expressions. A numerical example of a six-bar mechanism is presented, and the closed-form expressions are used to calculate—without graphical, numerical, or iterative techniques—the angular position, angular velocity, and angular acceleration of each link.


1984 ◽  
Vol 57 (6) ◽  
pp. 1917-1922 ◽  
Author(s):  
W. S. Krell ◽  
K. P. Agrawal ◽  
R. E. Hyatt

Specific airway conductance (sGaw) was measured during quiet breathing and during panting in 21 normal subjects and 10 patients with obstructive lung disease. The direct method used does not require measuring thoracic gas volume (TGV). Coefficients of variation were 5.5% for panting and 5.1% for quiet breathing. Interobserver variability was 4.7% in the quiet-breathing method and 6.3% in the panting method. The two methods gave equivalent results for sGaw. A slightly greater sGaw was found by the panting method in normal subjects with the highest sGaw values, probably due to widening of the oropharynx-glottis during panting. In six normal subjects studied for intrasubject variability over time, no significant diurnal or day-to-day variability was seen by either method. We conclude that the quiet-breathing method is a simple valid means of determining sGaw and utilizes a physiological respiratory maneuver. Obviation of the need to measure TGV is advantageous. Results are equivalent to those of the panting method and variability is similar.


2019 ◽  
Vol 7 (7_suppl5) ◽  
pp. 2325967119S0042
Author(s):  
Donna Moxley Scarborough ◽  
Shannon E. Linderman ◽  
Javier E. Sanchez ◽  
Eric M. Berkson

Objectives: Ball velocity is generated during the overhead baseball pitch via efficient force transmission up the kinetic chain, from the lower body up and outward to the throwing hand. The kinematic sequence, or the sequential timing pattern of peak angular velocities of body segments during a pitch, provides insight to segment position and motion control that drives the kinetic chain (Putnam CA, 1993). Previous publications report an ideal kinematic sequence (KS) where the timing of each body segment’s peak angular velocity occurs in a proximal-to-distal (PDS) pattern resulting in greater ball velocity and reduction in throwing arm injury risk (Fortenbaugh D, et.al, 2009). A recent study revealed that baseball pitchers perform a variety of KSs (Scarborough DM et.al, 2018). There is no known investigation of the relationship of kinematic sequences and throwing arm joint torques. The purpose of this study was to 1) identify the number of different KSs performed by each pitcher and 2) compare elbow valgus and shoulder external rotation (ER) and extension (Ext) torques between the 3 primary KSs performed during the fastball pitch. Methods: Fourteen collegiate baseball pitchers (20.57 ± 1.91 yr) underwent 3D biomechanical pitch analysis using 20 motion-capture Vicon MX™ cameras (360 Hz). A total of 119 fastball pitches with an average of 8.5 ± 2.71 pitches per player were analyzed. Elbow valgus and shoulder external rotation and extension torques were calculated. The timing of peak angular velocities for the pelvis, trunk, arm, forearm and hand body segments were recorded to generate each pitch’s KS. KSs were then divided into groups based on similarities to the ideal PDS pattern. ANCOVA statistical analyses were performed to compare joint torques across these KS groups with ball velocity as a covariate. Results: A total of 13 different KSs were observed across the 14 pitchers resulting in an average of 3 ± 1.41 different KSs per pitcher. Three different primary KS groups were identified: (1) PDS group: with a KS closest to the ideal PDS pattern (2) the Altered Distal Upper Extremity segment: with the forearm peaking after the hand (the most common group) and (3) Altered Proximal Upper Extremity segment order with the arm segment peaking after the hand (2nd most common). Across these three primary KS patterns, statistically significant differences were noted for elbow valgus torque [F(62,2) = 8.785, ɳ2 = .221, p < 0.00], shoulder external rotation (ER) torque [F(62,2) = 14.127, ɳ2 = .313, p < 0.00] and shoulder extension (Ext) torque [F(62,2) = 13.237, ɳ2 = .299, p < 0.00] (Figure 1). Conclusion: Our findings demonstrate that collegiate baseball pitchers performed an average of 3 different kinematic sequence patterns during fastball pitching. This is the first study to demonstrate a relationship between KSs and elbow and shoulder torque production. As anticipated, the PDS KSs produced the least torque across the elbow and shoulder joints. Alterations in Distal Upper Extremity KS was most common and generated the greatest shoulder Ext torques. Alterations in the Proximal Upper Extremity KS demonstrated the greatest elbow valgus and shoulder ER. Further study of the influence of kinematic sequence on joint torques in the baseball pitch may provide insight into pitching injuries and injury avoidance programs.


1999 ◽  
Vol 42 (1) ◽  
pp. 101-111 ◽  
Author(s):  
Maureen B. Higgins ◽  
David H. Chait ◽  
Laura Schulte

The purpose of this study was to determine if phonatory air flow characteristics differed among women with adductor spasmodic dysphonia (AdSD), muscle tension dysphonia (MTD), and normal phonation. Phonatory air flow signals were gathered during [pα] syllable repetitions. Mean phonatory air flow, coefficients of variation, and the presence of large air flow perturbations (75 ml/s or more) were examined for the three groups of speakers. There was no significant difference in mean phonatory air flow across groups, and very large intersubject variation in mean phonatory air flow occurred for both the AdSD and MTD groups. Coefficients of variation were similar for the groups of women with MTD and normal phonation but were significantly larger for the group with AdSD. Air flow perturbations were common with AdSD and rare with MTD. Relatively large coefficients of variation and air flow perturbations of at least 75 ml/s did occur for some women with normal voices who were 70 years of age or older. It appears that intrasubject variability in phonatory air flow may aid in the differentiation of AdSD and MTD when used in conjunction with other elements of a thorough voice evaluation. However, the potential contribution of aging to increased intrasubject variability in phonatory air flow must be considered when interpreting findings.


Author(s):  
Haemi JEE ◽  
Jaehyun PARK

Background: Asymmetry in repeated motion may lead to dyskinesia through imbalance in the involved musculoskeletal structures. The dominance sides are also involved greater movement involvement over the nondominant sides. The upper limbs with multiple joints and largest range of motion are prone for unsynchronized coordination. Natural movement analysis is required for application to everyday activities. Methods: Thirty participants were first recruited from Inha University, Incheon, Korea in 2019. Twenty subjects were assessed for comparisons of asymmetrical motion between the dominant and non-dominant arms during the abduction and adduction lateral raises after excluding ten subjects for shoulder pain and lefthandedness. Results: The abduction and adduction motions of the bilateral arms were compared for the angular locations, velocity, and acceleration for every 10 degrees. The angular locations of the dominant side occurred significant earlier in the initial (10°, 20°, 30°) phase and later in the last (10°, 20°) phase of abduction and adduction in comparison to the non-dominant side (P<.05). The angular accelerations of the dominant side were also significantly greater during the initial phase (0°, 10°, 30°) and last phase (0°, 10°, 30°) (P <.05). The angular velocities were significantly greater during the later phase (40, 50, 60°) of abduction (P <.04). Conclusion: Comparative dominant side indicated more controlled movements through the range of motion with greater stability in angular acceleration and deceleration especially during the initial and last phase of abduction and adduction, respectively. Training for control of the specific angular points should be considered during abduction and adduction motions to prevent asymmetry of the bilateral arms.


Sign in / Sign up

Export Citation Format

Share Document