scholarly journals The Relationship Between Whole-Body External Loading and Body-Worn Accelerometry During Team-Sport Movements

2017 ◽  
Vol 12 (1) ◽  
pp. 18-26 ◽  
Author(s):  
Niels J. Nedergaard ◽  
Mark A. Robinson ◽  
Elena Eusterwiemann ◽  
Barry Drust ◽  
Paulo J. Lisboa ◽  
...  

Purpose:To investigate the relationship between whole-body accelerations and body-worn accelerometry during team-sport movements.Methods:Twenty male team-sport players performed forward running and anticipated 45° and 90° side-cuts at approach speeds of 2, 3, 4, and 5 m/s. Whole-body center-of-mass (CoM) accelerations were determined from ground-reaction forces collected from 1 foot–ground contact, and segmental accelerations were measured from a commercial GPS accelerometer unit on the upper trunk. Three higher-specification accelerometers were also positioned on the GPS unit, the dorsal aspect of the pelvis, and the shaft of the tibia. Associations between mechanical load variables (peak acceleration, loading rate, and impulse) calculated from both CoM accelerations and segmental accelerations were explored using regression analysis. In addition, 1-dimensional statistical parametric mapping (SPM) was used to explore the relationships between peak segmental accelerations and CoM-acceleration profiles during the whole foot–ground contact.Results:A weak relationship was observed for the investigated mechanical load variables regardless of accelerometer location and task (R2 values across accelerometer locations and tasks: peak acceleration .08–.55, loading rate .27–.59, and impulse .02–.59). Segmental accelerations generally overestimated whole-body mechanical load. SPM analysis showed that peak segmental accelerations were mostly related to CoM accelerations during the first 40–50% of contact phase.Conclusions:While body-worn accelerometry correlates to whole-body loading in team-sport movements and can reveal useful estimates concerning loading, these correlations are not strong. Body-worn accelerometry should therefore be used with caution to monitor whole-body mechanical loading in the field.

2020 ◽  
pp. 1-10
Author(s):  
Matthew K. Seeley ◽  
Seong Jun Son ◽  
Hyunsoo Kim ◽  
J. Ty Hopkins

Context: Patellofemoral pain (PFP) is often categorized by researchers and clinicians using subjective self-reported PFP characteristics; however, this practice might mask important differences in movement biomechanics between PFP patients. Objective: To determine whether biomechanical differences exist during a high-demand multiplanar movement task for PFP patients with similar self-reported PFP characteristics but different quadriceps activation levels. Design: Cross-sectional design. Setting: Biomechanics laboratory. Participants: A total of 15 quadriceps deficient and 15 quadriceps functional (QF) PFP patients with similar self-reported PFP characteristics. Intervention: In total, 5 trials of a high-demand multiplanar land, cut, and jump movement task were performed. Main Outcome Measures: Biomechanics were compared at each percentile of the ground contact phase of the movement task (α = .05) between the quadriceps deficient and QF groups. Biomechanical variables included (1) whole-body center of mass, trunk, hip, knee, and ankle kinematics; (2) hip, knee, and ankle kinetics; and (3) ground reaction forces. Results: The QF patients exhibited increased ground reaction force, joint torque, and movement, relative to the quadriceps deficient patients. The QF patients exhibited: (1) up to 90, 60, and 35 N more vertical, posterior, and medial ground reaction force at various times of the ground contact phase; (2) up to 4° more knee flexion during ground contact and up to 4° more plantarflexion and hip extension during the latter parts of ground contact; and (3) up to 26, 21, and 48 N·m more plantarflexion, knee extension, and hip extension torque, respectively, at various times of ground contact. Conclusions: PFP patients with similar self-reported PFP characteristics exhibit different movement biomechanics, and these differences depend upon quadriceps activation levels. These differences are important because movement biomechanics affect injury risk and athletic performance. In addition, these biomechanical differences indicate that different therapeutic interventions may be needed for PFP patients with similar self-reported PFP characteristics.


1998 ◽  
Vol 3 (2) ◽  
pp. 4-5
Author(s):  
Glenn Pransky

Abstract According to the AMA Guides to the Evaluation of Permanent Impairment, a functional capacity evaluation (FCE) measures an individual's physical abilities via a set of activities in a structured setting and provides objective data about the relationship between an impairment and maximal ability to perform work activities. A key distinction between FCEs and self-reported activities of daily living is that the former involve direct observation by professional evaluators. Numerous devices can quantify the physical function of a specific part of the musculoskeletal system but do not address the performance of whole body tasks in the workplace, and these devices have not been shown to predict accurately the ability to perform all but the simplest job tasks. Information about reliability has been proposed as a way to identify magnification and malingering, but variability due to pain and poor comprehension of instructions may cause variations in assessments. Structured work capacity evaluations involve a set of activities but likely underestimate the individual's ability to do jobs that involve complex or varying activities. Job simulations involve direct observation of an individual performing actual job tasks, require a skilled and experienced evaluator, and raise questions about expense, time, objectivity and validity of results, and interpretation of results in terms of the ability to perform specific jobs. To understand the barriers to return to work, examiners must supplement FCEs with information regarding workplace environment, accommodations, and demotivators.


2018 ◽  
Vol 64 (6) ◽  
pp. 799-804
Author(s):  
Darya Ryzhkova ◽  
M. Poyda

Purpose: To study the diagnostic value of PET-CT with 68Ga-PSMA-11 in the diagnosis of a primary prostate cancer, preoperative staging, and the detection of recurrence of prostate cancer (PCa). Methods: 28 patients aged 64.7 ± 8.74 years were included. 10 patients primary prostate cancer, and 18 patients with biochemical recurrence of the disease after radical treatment were examined. All patients underwent PET-CT with 68Ga-PSMA-11 according the whole body protocol. Interpretation of images was performed visually and quantitatively by calculation of SUL max. Results: High focal or diffuse 68Ga-PSMA-11 uptake was found in prostate parenchyma in patients with primary prostate cancer. Additionally metastases in regional lymph nodes were diagnosed in 4 patients and bone metastases were found in one patient. The correlation between 68Ga-PSMA-11 uptake level and Gleason index in the primary tumor (R Spearmen = 0.25, p = 0.57) was not observed. PET-positive results were obtained in 14 patients and PET-negative results in 4 patients with biochemical recurrence of PCa. The relationship between the frequency of PET-positive results and Gleason index was not revealed (R Spearmen = 0.2, p = 0.39). We found a weak but significant correlation between the frequency of PET-positive results and the prostate tumor stage according to the T category (R Spearmen = 0.49, p = 0.049). In patients with low values of PSA (less than 1.0 ng/ml) in 4 out of 9 cases, PET-negative results were obtained. In patients with PSA level more than 1.0 ng/ml PET-positive results were obtained in all cases. Conclusions: PET/CT with 68Ga-PSMA-11 allows to diagnose the primary prostate cancer, to establish the stage of the disease in categories N and M, and also to determine the localization and dissemination of the tumor in patients with biochemical recurrence of prostate cancer. The relationship between 68Ga-PSMA-11 uptake in primary tumor and Gleason index was not found. The probability of obtaining PET-positive results in cases of biochemical recurrence is affected by a PSA level above 1 ng/ml and a high stage of the disease according to the T category (T3-T4).


2019 ◽  
Vol 20 (7) ◽  
pp. 644-651 ◽  
Author(s):  
Changsong Gu ◽  
Xiangbing Mao ◽  
Daiwen Chen ◽  
Bing Yu ◽  
Qing Yang

Branched chain amino acids are the essential nutrients for humans and many animals. As functional amino acids, they play important roles in physiological functions, including immune functions. Isoleucine, as one of the branched chain amino acids, is also critical in physiological functions of the whole body, such as growth, immunity, protein metabolism, fatty acid metabolism and glucose transportation. Isoleucine can improve the immune system, including immune organs, cells and reactive substances. Recent studies have also shown that isoleucine may induce the expression of host defense peptides (i.e., β-defensins) that can regulate host innate and adaptive immunity. In addition, isoleucine administration can restore the effect of some pathogens on the health of humans and animals via increasing the expression of β-defensins. Therefore, the present review will emphatically discuss the effect of isoleucine on immunity while summarizing the relationship between branched chain amino acids and immune functions.


Biomedicines ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 287
Author(s):  
Maria Isabella Donegani ◽  
Alberto Miceli ◽  
Matteo Pardini ◽  
Matteo Bauckneht ◽  
Silvia Chiola ◽  
...  

We aimed to evaluate the brain hypometabolic signature of persistent isolated olfactory dysfunction after SARS-CoV-2 infection. Twenty-two patients underwent whole-body [18F]-FDG PET, including a dedicated brain acquisition at our institution between May and December 2020 following their recovery after SARS-Cov2 infection. Fourteen of these patients presented isolated persistent hyposmia (smell diskettes olfaction test was used). A voxel-wise analysis (using Statistical Parametric Mapping software version 8 (SPM8)) was performed to identify brain regions of relative hypometabolism in patients with hyposmia with respect to controls. Structural connectivity of these regions was assessed (BCB toolkit). Relative hypometabolism was demonstrated in bilateral parahippocampal and fusiform gyri and in left insula in patients with respect to controls. Structural connectivity maps highlighted the involvement of bilateral longitudinal fasciculi. This study provides evidence of cortical hypometabolism in patients with isolated persistent hyposmia after SARS-Cov2 infection. [18F]-FDG PET may play a role in the identification of long-term brain functional sequelae of COVID-19.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sung Eun Kim ◽  
Jangyun Lee ◽  
Sae Yong Lee ◽  
Hae-Dong Lee ◽  
Jae Kun Shim ◽  
...  

AbstractThe purpose of this study was to investigate how the ball position along the mediolateral (M-L) direction of a golfer causes a chain effect in the ground reaction force, body segment and joint angles, and whole-body centre of mass during the golf swing. Twenty professional golfers were asked to complete five straight shots for each 5 different ball positions along M-L: 4.27 cm (ball diameter), 2.14 cm (ball radius), 0 cm (reference position at preferred ball position), – 2.14 cm, and – 4.27 cm, while their ground reaction force and body segment motions were captured. The dependant variables were calculated at 14 swing events from address to impact, and the differences between the ball positions were evaluated using Statistical Parametric Mapping. The left-sided ball positions at address showed a greater weight distribution on the left foot with a more open shoulder angle compared to the reference ball position, whereas the trend was reversed for the right-sided ball positions. These trends disappeared during the backswing and reappeared during the downswing. The whole-body centre of mass was also located towards the target for the left-sided ball positions throughout the golf swing compared to the reference ball position, whereas the trend was reversed for the right-sided ball positions. We have concluded that initial ball position at address can cause a series of chain effects throughout the golf swing.


Author(s):  
Ruyu Liu ◽  
Caitlyn G Edwards ◽  
Corinne N Cannavale ◽  
Isabel R Flemming ◽  
Morgan R Chojnacki ◽  
...  

Abstract Background Breastfeeding is associated with healthier weight and nutrient status in early life. However, the impact of breastfeeding on carotenoid status beyond infancy, and the influence of adiposity, is unknown. Objective The aim of the study was to retrospectively investigate the relationship between breastfeeding and carotenoid status, and the mediating effect of weight status and adiposity on this relationship among school-aged children. Methods This was a secondary analysis of baseline data collected from a randomized-controlled clinical trial. (ClinicalTrials.gov Identifier: NCT03521349). 7–12-year-old (n = 81) children were recruited from East-Central Illinois. Dual-energy x-ray absorptiometry (DXA) was used to assess visceral adipose tissue (VAT) and whole-body adiposity (%Fat). Weight was obtained to calculated body mass index percentile (BMI %ile). Skin carotenoids were assessed via reflection spectroscopy. Macular carotenoids were assessed as macular pigment optical density (MPOD). Dietary, birth, and breastfeeding information was self-reported by parents. Results Skin carotenoids were inversely related to %Fat (P < 0.01), VAT (P < 0.01) and BMI %ile (P < 0.01). VAT and BMI %ile significantly mediated this relationship between exclusive breastfeeding duration and skin carotenoids, following adjustment for dietary carotenoids, energy intake, and mother education. Conclusions Weight status and adipose tissue distribution mediate the positive correlation between exclusive breastfeeding duration and skin carotenoids among children aged 7–12 years. The results indicate the need to support breastfeeding and healthy physical growth in childhood for optimal carotenoid status.


Author(s):  
Brian D. Lowe

Psychophysical approaches to quantifying perceived effort have been used to evaluate the physical demand of many industrial work activities. An experiment was conducted to examine the relationship between ratings of whole-body perceived exertion and differentiated, regional ratings of exertion. The Borg, CR-10 scale was used by 16 subjects performing a simulated repetitive lifting task. Ratings of perceived exertion were obtained for the arms, legs, torso, and central (cardiorespiratory) effort sensations as well as a rating of overall, whole-body exertion. A multiple linear regression analysis was used to predict the whole-body rating of exertion from the differentiated ratings in lifting tasks using both a squat and stoop posture. In the stoop posture condition the coefficient of determination between whole-body perceived exertion and the model including arm, torso, and central ratings was R2=0.81. In the squat posture condition, the final regression model predicting whole-body exertion contained only the rating from the legs (R2 = 0.62). Differentiated ratings explained the majority of the variance in whole-body perceived exertion for squat and stoop lifting tasks.


Sports ◽  
2018 ◽  
Vol 6 (4) ◽  
pp. 174 ◽  
Author(s):  
Thomas Dos’Santos Christopher Thomas ◽  
Paul Comfort ◽  
Paul A. Jones

The purpose of this study was twofold: (1) to examine differences in change of direction (COD) performance and asymmetries between team-sports while considering the effects of sex and sport; (2) to evaluate the relationship between linear speed, COD completion time, and COD deficit. A total of 115 (56 males, 59 females) athletes active in cricket, soccer, netball, and basketball performed the 505 for both left and right limbs and a 10-m sprint test. All team-sports displayed directional dominance (i.e., faster turning performance/shorter COD deficits towards a direction) (p ≤ 0.001, g = −0.62 to −0.96, −11.0% to −28.4%) with, male cricketers tending to demonstrate the greatest COD deficit asymmetries between directions compared to other team-sports (28.4 ± 26.5%, g = 0.19–0.85), while female netballers displayed the lowest asymmetries (11.0 ± 10.1%, g = 0.14–0.86). Differences in sprint and COD performance were observed between sexes and sports, with males demonstrating faster 10-m sprint times, and 505 times compared to females of the same sport. Male soccer and male cricketers displayed shorter COD deficits compared to females of the same sport; however, female court athletes demonstrated shorter COD deficits compared to male court athletes. Large significant associations (ρ = 0.631–0.643, p < 0.001) between 505 time and COD deficit were revealed, while trivial, non-significant associations (ρ ≤ −0.094, p ≥ 0.320) between COD deficit and 10-m sprint times were observed. In conclusion, male and female team-sport athletes display significant asymmetries and directional dominance during a high approach velocity 180° turning task. Coaches and practitioners are advised to apply the COD deficit for a more isolated measure of COD ability (i.e., not biased towards athletes with superior acceleration and linear speed) and perform COD speed assessments from both directions to establish directional dominance and create a COD symmetry profile.


Sign in / Sign up

Export Citation Format

Share Document