The Effect of Sodium Bicarbonate Supplementation on the Decline in Gross Efficiency During a 2000-m Cycling Time Trial

2020 ◽  
Vol 15 (5) ◽  
pp. 741-747 ◽  
Author(s):  
Anna E. Voskamp ◽  
Senna van den Bos ◽  
Carl Foster ◽  
Jos J. de Koning ◽  
Dionne A. Noordhof

Background: Gross efficiency (GE) declines during high-intensity exercise. Increasing extracellular buffer capacity might diminish the decline in GE and thereby improve performance. Purpose: To examine if sodium bicarbonate (NaHCO3) supplementation diminishes the decline in GE during a 2000-m cycling time trial. Methods: Sixteen male cyclists and 16 female cyclists completed 4 testing sessions including a maximal incremental test, a familiarization trial, and two 2000-m GE tests. The 2000-m GE tests were performed after ingestion of either NaHCO3 supplements (0.3 g/kg body mass) or placebo supplements (amylum solani, magnesium stearate, and sunflower oil capsules). The GE tests were conducted using a double-blind, randomized, crossover design. Power output, gas exchange, and time to complete the 2000-m time trials were recorded. Capillary blood samples were analyzed for blood bicarbonate, pH, and lactate concentration. Data were analyzed using magnitude-based inference. Results: The decrement in GE found after the 2000-m time trial was possibly smaller in the male and female groups after NaHCO3 than with placebo ingestion, with the effect in both groups combined being unclear. The effect on performance was likely trivial for males (placebo 164.2 [5.0] s, NaHCO3 164.3 [5.0] s; Δ0.1; ±0.6%), unclear for females (placebo 178.6 [4.8] s, NaHCO3 178.0 [4.3] s; Δ−0.3; ±0.5%), and very likely trivial when effects were combined. Blood bicarbonate, pH, and lactate concentration were substantially elevated from rest to pretest after NaHCO3 ingestion. Conclusions: NaHCO3 supplementation results in an unclear effect on the decrease in GE during high-intensity exercise and in a very likely trivial effect on performance.

2020 ◽  
Vol 34 (3) ◽  
pp. 471-481
Author(s):  
Gabriel Barreto ◽  
Rafael Pires da Silva ◽  
Guilherme Yamaguchi ◽  
Luana Farias de Oliveira ◽  
Vitor de Salles Painelli ◽  
...  

Caffeine has been shown to increase anaerobic energy contribution during short-duration cycling time-trials (TT) though no information exists on whether caffeine alters energy contribution during more prolonged, aerobic type TTs. The aim of this study was to determine the effects of caffeine supplementation on longer and predominantly aerobic exercise. Fifteen recreationally-trained male cyclists (age 38±8 y, height 1.76±0.07 m, body mass 72.9±7.7 kg) performed a ~30 min cycling TT following either 6 mg·kg-1BM caffeine (CAF) or placebo (PLA) supplementation, and one control (CON) session without supplementation, in a double- -blind, randomised, counterbalance and cross-over design. Mean power output (MPO) was recorded as the outcome measure. Respiratory values were measured throughout exercise for the determination of energy system contribution. Data were analysed using mixed-models. CAF improved mean MPO compared to CON (P=0.01), and a trend towards an improvement compared to PLA (P=0.07); there was no difference in MPO at any timepoint throughout the exercise between conditions. There was a main effect of Condition (P=0.04) and Time (P<0.0001) on blood lactate concentration, which tended to be higher in CAF vs. both PLA and CON (Condition effect, both P=0.07). Ratings of perceived exertion increased over time (P<0.0001), with no effect of Condition or interaction (both P>0.05). Glycolytic energy contribution was increased in CAF compared to CON and PLA (both P<0.05), but not aerobic or ATP-CP (both P>0.05). CAF improved aerobic TT performance compared to CON, which could be explained by increased glycolytic energy contribution.


Author(s):  
William H. Gurton ◽  
Steve H. Faulkner ◽  
Ruth M. James

Purpose: To examine whether an ecologically valid, intermittent, sprint-based warm-up strategy impacted the ergogenic capacity of individualized sodium bicarbonate (NaHCO3) ingestion on 4-km cycling time-trial (TT) performance. Methods: A total of 8 male cyclists attended 6 laboratory visits for familiarization, determination of time to peak blood bicarbonate, and 4 × 4-km cycling TTs. Experimental beverages were administered doubleblind. Treatments were conducted in a block-randomized, crossover order: intermittent warm-up + NaHCO3 (IWSB), intermittent warm-up + placebo, control warm-up + NaHCO3 (CWSB), and control warm-up + placebo (CWP). The intermittent warm-up comprised exercise corresponding to lactate threshold (5 min at 50%, 2 min at 60%, 2 min at 80%, 1 min at 100%, and 2 min at 50%) and 3 × 10-second maximal sprints. The control warm-up comprised 16.5 minutes cycling at 150 W. Participants ingested 0.3 g·kg body mass−1 NaHCO3 or 0.03 g·kg body mass−1 sodium chloride (placebo) in 5 mL·kg body mass−1 fluid (3:2, water and sugar-free orange squash). Paired t tests were conducted for TT performance. Hematological data (blood bicarbonate and blood lactate) and gastrointestinal discomfort were analyzed using repeated-measures analysis of variance. Results: Performance was faster for CWSB versus IWSB (5.0 [6.1] s; P = .052) and CWP (5.8 [6.0] s; P = .03). Pre-TT bicarbonate concentration was elevated for CWSB versus IWSB (+9.3 mmol·L−1; P < .001) and CWP (+7.1 mmol·L−1; P < .001). Post-TT blood lactate concentration was elevated for CWSB versus CWP (+2.52 mmol·L−1; P = .022). Belching was exacerbated pre-warm-up for IWSB versus intermittent warm-up +placebo (P = .046) and CWP (P = .027). Conclusion: An intermittent, sprint-based warm-up mitigated the ergogenic benefits of NaHCO3 ingestion on 4-km cycling TT performance.


2019 ◽  
Author(s):  
Fabiano Tomazini ◽  
Ana Carla S. Mariano ◽  
Victor A. Andrade-Souza ◽  
Viviane C. Sebben ◽  
Carlos A. B. de Maria ◽  
...  

AbstractAcetaminophen has been combined with caffeine for therapeutic purpose, but the effect of co-ingestion of acetaminophen and caffeine on exercise performance has not been investigated. The aim of this study was to determine the effect of isolated and combined ingestion of caffeine and acetaminophen on performance during a 4-km cycling time-trial. In a double-blind, crossover design, eleven men, accustomed to cycling recreationally, completed a 4-km cycling time-trial one hour after the ingestion of cellulose (PLA), acetaminophen (20 mg·kg−1body mass, ACT), caffeine (5 mg·kg−1body mass, CAF) or combined acetaminophen and caffeine (20 and 5 mg·kg−1body mass, respectively, ACTCAF). The perception of pain and rating of perceived exertion were recorded every 1-km, and electromyography and oxygen uptake were continually recorded and averaged each 1-km. Plasma lactate concentration was measured before and immediately after the trial. The time and mean power during the 4-km cycling time-trial was significantly improved (P< 0.05) in CAF (407.9 ± 24.5 s, 241.4 ± 16.1 W) compared to PLA (416.1 ± 34.1 s, 234.1 ± 19.2 W) and ACT (416.2 ± 26.6 s, 235.8 ± 19.7 W). However, there was no difference between ACTCAF (411.6 ± 27.7 s, 238.7 ± 18.7 W) and the other conditions (P> 0.05). The perception of pain, rating of perceived exertion, electromyography, oxygen uptake, and plasma lactate were similar across the conditions (P> 0.05). In conclusion, caffeine but not acetaminophen increases power output ultimately increasing performance during a 4-km cycling time-trial.


2020 ◽  
Vol 34 (3) ◽  
pp. 471-481
Author(s):  
Gabriel Barreto ◽  
Rafael Pires da Silva ◽  
Guilherme Yamaguchi ◽  
Luana Farias de Oliveira ◽  
Vitor de Salles Painelli ◽  
...  

Caffeine has been shown to increase anaerobic energy contribution during short-duration cycling time-trials (TT) though no information exists on whether caffeine alters energy contribution during more prolonged, aerobic type TTs. The aim of this study was to determine the effects of caffeine supplementation on longer and predominantly aerobic exercise. Fifteen recreationally-trained male cyclists (age 38±8 y, height 1.76±0.07 m, body mass 72.9±7.7 kg) performed a ~30 min cycling TT following either 6 mg·kg-1BM caffeine (CAF) or placebo (PLA) supplementation, and one control (CON) session without supplementation, in a double- -blind, randomised, counterbalance and cross-over design. Mean power output (MPO) was recorded as the outcome measure. Respiratory values were measured throughout exercise for the determination of energy system contribution. Data were analysed using mixed-models. CAF improved mean MPO compared to CON (P=0.01), and a trend towards an improvement compared to PLA (P=0.07); there was no difference in MPO at any timepoint throughout the exercise between conditions. There was a main effect of Condition (P=0.04) and Time (P<0.0001) on blood lactate concentration, which tended to be higher in CAF vs. both PLA and CON (Condition effect, both P=0.07). Ratings of perceived exertion increased over time (P<0.0001), with no effect of Condition or interaction (both P>0.05). Glycolytic energy contribution was increased in CAF compared to CON and PLA (both P<0.05), but not aerobic or ATP-CP (both P>0.05). CAF improved aerobic TT performance compared to CON, which could be explained by increased glycolytic energy contribution.


2012 ◽  
Vol 22 (3) ◽  
pp. 175-183 ◽  
Author(s):  
Andrew E. Kilding ◽  
Claire Overton ◽  
Jonathan Gleave

Purpose:To determine the effects of ingesting caffeine (CAFF) and sodium bicarbonate (SB), taken individually and simultaneously, on 3-km cycling time-trial (TT) performance.Method:Ten well-trained cyclists, age 24.2 ± 5.4 yr, participated in this acute-treatment, double-blind, crossover study that involved four 3-km cycling TTs performed on separate days. Before each TT, participants ingested either 3 mg/kg body mass (BM) of CAFF, 0.3 g · kg−1 · BM−1 of SB, a combination of the two (CAFF+SB), or a placebo (PLAC). They completed each 3-km TT on a laboratory-based cycle ergometer, during which physiological, perceptual, and performance measurements were determined. For statistical analysis, the minimal worthwhile difference was considered ~1% based on previous research.Results:Pretrial pH and HCO3 were higher in SB and CAFF+SB than in the CAFF and PLAC trials. Differences across treatments for perceived exertion and gastric discomfort were mostly unclear. Compared with PLAC, mean power output during the 3-km TT was higher in CAFF, SB, and CAFF+SB trials (2.4%, 2.6%, 2.7% respectively), resulting in faster performance times (–0.9, –1.2, –1.2% respectively). Effect sizes for all trials were small (0.21–0.24).Conclusions:When ingested individually, both CAFF and SB enhance high-intensity cycling TT performance in trained cyclists. However, the ergogenic effect of these 2 popular supplements was not additive, bringing into question the efficacy of coingesting the 2 supplements before short-duration high-intensity exercise. In this study there were no negative effects of combining CAFF and SB, 2 relatively inexpensive and safe supplements.


PLoS ONE ◽  
2014 ◽  
Vol 9 (10) ◽  
pp. e110320 ◽  
Author(s):  
Carlos Rafaell Correia-Oliveira ◽  
Ralmony Alcantara Santos ◽  
Marcos David Silva-Cavalcante ◽  
Romulo Bertuzzi ◽  
Maria Augusta Peduti Dal’Molin Kiss ◽  
...  

Author(s):  
Adam U. Upshaw ◽  
Tiffany S. Wong ◽  
Arash Bandegan ◽  
Peter W.R. Lemon

Postexercise chocolate milk ingestion has been shown to enhance both glycogen resynthesis and subsequent exercise performance. To assess whether nondairy chocolate beverage ingestion post–glycogen-lowering exercise can enhance 20-km cycling time trial performance 4 hr later, eight healthy trained male cyclists (21.8 ± 2.3y, VO2max = 61.2 ± 1.4 ml·kg-1·min-1; M ± SD) completed a series of intense cycling intervals designed to lower muscle glycogen (Jentjens & Jeukendrup, 2003) followed by 4 hr of recovery and a subsequent 20-km cycling time trial. During the first 2 hr of recovery, participants ingested chocolate dairy milk (DAIRYCHOC), chocolate soy beverage (SOYCHOC), chocolate hemp beverage (HEMPCHOC), low-fat dairy milk (MILK), or a low-energy artificially sweetened, flavored beverage (PLACEBO) at 30-min intervals in a double-blind, counterbalanced repeated-measures design. All drinks, except the PLACEBO (247 kJ) were isoenergetic (2,107 kJ), and all chocolate-flavored drinks provided 1-g CHO·kg body mass-1·h-1. Fluid intake across treatments was equalized (2,262 ± 148 ml) by ingesting appropriate quantities of water based on drink intake. The CHO:PRO ratio was 4:1, 1.5:1, 4:1, and 6:1 for DAIRYCHOC, MILK, SOYCHOC, and HEMPCHOC, respectively. One-way analysis of variance with repeated measures showed time trial performance (DAIRYCHOC = 34.58 ± 2.5 min, SOYCHOC = 34.83 ± 2.2 min, HEMPCHOC = 34.88 ± 1.1 min, MILK = 34.47 ± 1.7 min) was enhanced similarly vs PLACEBO (37.85 ± 2.1) for all treatments (p = .019) These data suggest that postexercise macronutrient and total energy intake are more important for same-day 20-km cycling time trial performance after glycogen-lowering exercise than protein type or protein-to-carbohydrate ratio.


2021 ◽  
Author(s):  
Silvia Barbaresi ◽  
Laura Blancquaert ◽  
Zoran Nikolovski ◽  
Sarah de Jager ◽  
Mathew Wilson ◽  
...  

Abstract Background: chicken meat extract is a popular functional food in Asia. It is rich in the bioactive compounds carnosine and anserine, two histidine-containing dipeptides (HCD). Studies suggest that acute pre-exercise ingestion of chicken extracts has important applications towards exercise performance and fatigue control, but the evidence is equivocal. This study aimed to evaluate the ergogenic potential of the pre-exercise ingestion of a homemade chicken broth (CB) vs a placebo soup on a short-lasting, high-intensity cycling exercise. Methods: fourteen men participated in this double-blind, placebo-controlled, crossover intervention study. Subjects ingested either CB, thereby receiving 46.4 mg/kg body weight of HCD, or a placebo soup (similar in taste without HCD) 40 min before an 8 min cycling time trial (TT) was performed. Venous blood samples were collected at arrival (fasted), before exercise and at 5 min recovery. Plasma HCD were measured with UPLC-MS/MS and glutathione (in red blood cells) was measured through HPLC. Capillary blood samples were collected at different timepoints before and after exercise. Results: a significant improvement (p=0.033; 5.2%) of the 8 min TT mean power was observed after CB supplementation compared to placebo. Post-exercise plasma carnosine (p<0.05) and anserine (p<0.001) was significantly increased after CB supplementation and not following placebo. No significant effect of CB supplementation was observed either on blood glutathione levels, nor on capillary blood analysis. Conclusions: oral CB supplementation improved the 8 min TT performance albeit it did not affect the acid-base balance or oxidative status parameters. Further research should unravel the potential role and mechanisms of HCD, present in CB, in this ergogenic approach.


Author(s):  
John L. Ivy ◽  
Lynne Kammer ◽  
Zhenping Ding ◽  
Bei Wang ◽  
Jeffrey R. Bernard ◽  
...  

Context:Not all athletic competitions lend themselves to supplementation during the actual event, underscoring the importance of preexercise supplementation to extend endurance and improve exercise performance. Energy drinks are composed of ingredients that have been found to increase endurance and improve physical performance.Purpose:The purpose of the study was to investigate the effects of a commercially available energy drink, ingested before exercise, on endurance performance.Methods:The study was a double-blind, randomized, crossover design. After a 12-hr fast, 6 male and 6 female trained cyclists (mean age 27.3 ± 1.7 yr, mass 68.9 ± 3.2 kg, and VO2 54.9 ± 2.3 ml · kg–1 · min–1) consumed 500 ml of either flavored placebo or Red Bull Energy Drink (ED; 2.0 g taurine, 1.2 g glucuronolactone, 160 mg caffeine, 54 g carbohydrate, 40 mg niacin, 10 mg pantothenic acid, 10 mg vitamin B6, and 10 μg vitamin B12) 40 min before a simulated cycling time trial. Performance was measured as time to complete a standardized amount of work equal to 1 hr of cycling at 70% Wmax.Results:Performance improved with ED compared with placebo (3,690 ± 64 s vs. 3,874 ± 93 s, p < .01), but there was no difference in rating of perceived exertion between treatments. β-Endorphin levels increased during exercise, with the increase for ED approaching significance over placebo (p = .10). Substrate utilization, as measured by open-circuit spirometry, did not differ between treatments.Conclusion:These results demonstrate that consuming a commercially available ED before exercise can improve endurance performance and that this improvement might be in part the result of increased effort without a concomitant increase in perceived exertion.


2014 ◽  
Vol 39 (9) ◽  
pp. 1050-1057 ◽  
Author(s):  
Stephen C. Lane ◽  
John A. Hawley ◽  
Ben Desbrow ◽  
Andrew M. Jones ◽  
James R. Blackwell ◽  
...  

Both caffeine and beetroot juice have ergogenic effects on endurance cycling performance. We investigated whether there is an additive effect of these supplements on the performance of a cycling time trial (TT) simulating the 2012 London Olympic Games course. Twelve male and 12 female competitive cyclists each completed 4 experimental trials in a double-blind Latin square design. Trials were undertaken with a caffeinated gum (CAFF) (3 mg·kg−1 body mass (BM), 40 min prior to the TT), concentrated beetroot juice supplementation (BJ) (8.4 mmol of nitrate (NO3–), 2 h prior to the TT), caffeine plus beetroot juice (CAFF+BJ), or a control (CONT). Subjects completed the TT (females: 29.35 km; males: 43.83 km) on a laboratory cycle ergometer under conditions of best practice nutrition: following a carbohydrate-rich pre-event meal, with the ingestion of a carbohydrate–electrolyte drink and regular oral carbohydrate contact during the TT. Compared with CONT, power output was significantly enhanced after CAFF+BJ and CAFF (3.0% and 3.9%, respectively, p < 0.01). There was no effect of BJ supplementation when used alone (–0.4%, p = 0.6 compared with CONT) or when combined with caffeine (–0.9%, p = 0.4 compared with CAFF). We conclude that caffeine (3 mg·kg−1 BM) administered in the form of a caffeinated gum increased cycling TT performance lasting ∼50–60 min by ∼3%–4% in both males and females. Beetroot juice supplementation was not ergogenic under the conditions of this study.


Sign in / Sign up

Export Citation Format

Share Document