scholarly journals Pole Length’s Influence on Performance During Classic-Style Snow Skiing in Well-Trained Cross-Country Skiers

2020 ◽  
Vol 15 (6) ◽  
pp. 884-891
Author(s):  
Erik Trøen ◽  
Bjarne Rud ◽  
Øyvind Karlsson ◽  
Camilla Høivik Carlsen ◽  
Matthias Gilgien ◽  
...  

Purpose: To investigate how self-selected pole length (PL) of ∼84% (PL84%) compared with ∼90% (PL90%) of body height influenced performance during a 700-m time trial with undulating terrain on snow. Methods: Twenty-one cross-country skiers, 7 of whom were women, performed 4 trials at a maximal effort in a counterbalanced fashion with PL84% and PL90% separated by 20-minute breaks between trials. In trials I and II, only double poling was allowed, while in trials III and IV, skiers used self-selected classical subtechniques. Continuous speed, cyclic parameters, and heart rate were collected using microsensors in addition to a post-time-trial rating of perceived exertion (RPE). Results: The 700-m times with only double poling were significantly shorter with PL90% than PL84% (mean ± 95% confidence limits –1.6% ± 1.0%). Segment analyses showed higher speed with PL90% in uphill sections than with PL84% (3.7% ± 2.1%), with the greatest difference found for the female skiers (5.6% ± 2.9%). In contrast, on flat terrain at high skiing speeds, speed was reduced with PL90% compared with PL84% (–1.5% ± 1.4%); this was only significant for the male skiers. During free choice of classical subtechniques, PL did not influence performance in any segments, choice of subtechnique, or cycle rate during the trials. No differences in rating of perceived exertion or heart rate between PLs were found. Conclusions: PL90% improved performance in uphills at low speeds when using double poling but hindered performance on flat terrain and at higher speeds compared with self-selected PLs. Choice of PL should, therefore, be based on racecourse topography, preferred subtechniques, and the skier’s physiological and technical abilities.

2021 ◽  
Vol 77 (1) ◽  
pp. 97-105
Author(s):  
Per-Øyvind Torvik ◽  
Johan Persson ◽  
Roland van den Tillaar

Abstract The aims of this study were to compare performance with physiological and perceptual responses on steep uphill inclines between double poling and diagonal stride and to investigate the effects of pole length when double poling. Eight male, competitive cross-country skiers (22 ± 1.1 yrs, peak oxygen uptake (VO2peak) in the diagonal stride: 69.4 ± 5.5 ml·kg-1·min-1) performed four identical tests, one in the diagonal stride, and three in double poling with different pole lengths (self-selected, self-selected -5 cm and self-selected +10 cm). Each test was conducted at a fixed speed (10 km/h), with inclination rising by 1%, starting with 7%, each until voluntary exhaustion. VO2peak, the heart rate, blood lactate concentration, and the rating of perceived exertion were determined for each pole length in each test. The peak heart rate (p < 0.001) and VO2peak (p = 0.004) were significantly higher in the diagonal stride test compared with double poling with all pole lengths. Time to exhaustion (TTE) differed significantly between all four conditions (all p < 0.001), with the following order from the shortest to the longest TTE: short poles, normal poles and long poles in double poling, and the diagonal stride. Consequently, a significantly higher slope inclination was reached (p < 0.001) using the diagonal stride (17%) than for double poling with long poles (14%), normal (13%) and short (13%) poles. The current study showed better performance and higher VO2peak in the diagonal stride compared to double poling in steep uphill terrain, demonstrating the superiority of the diagonal stride for uphill skiing. However, in double poling, skiers achieved improved performance due to greater skiing efficiency when using long poles, compared to normal and short poles.


Author(s):  
Per-Øyvind Torvik ◽  
Roland van den Tillaar ◽  
Guro Bostad ◽  
Øyvind Sandbakk

Abstract Purpose The purpose of this study was to examine the effect of pole length on performance and technique selection during a simulated skating cross-country (XC) skiing competition on snow in female XC skiers. Methods Nine female XC skiers and biathletes (VO2max 63.6 ± 6.2 mL/min/kg, age 22.9 ± 3.5 years, body height 1.69 ± 0.1 m and body mass 60.8 ± 4.6 kg) completed two 5-km skating time-trail with maximal effort. The athletes had a minimum 4.5 h of rest between the two races, which were performed in a random order: one with self-selected poles (89.0% ± 0.6% of body height) and one with 7.5 cm increased pole length (94.0% ± 0.5% of body height). Speed in set terrain sections was determined and the selection of sub-technique was self-reported immediately after each race based on a detailed review of the entire track. Results Skiers performed on average 7.1 ± 7.1 s (P = 0.029) faster with the long poles, with this difference occurring during the first 200 m and in the uphill parts of the track, in which ~ 5% more G3 and ~ 5% fewer G2 sub-techniques were chosen (both P < 0.05). The rating of perceived exertion was 1 ± 0.9 point lower (P = 0.04) and skiing technique was perceived to be ~ 1.2 ± 1.5 points better with long poles (P = 0.038), while the physiological responses (i.e., peak and average heart rate, and blood lactate concentration) did not differ between trials. Conclusion In conclusion, poles 7.5 cm longer than self-selected ones improved performance in skating, by enhancing speed in the initial phase (first 200 m) and in the uphill section of the track. In addition, the longer poles induced more use of the G3 skating sub-technique.


2015 ◽  
Vol 119 (12) ◽  
pp. 1501-1509 ◽  
Author(s):  
H. K. Stadheim ◽  
E. M Nossum ◽  
R. Olsen ◽  
M. Spencer ◽  
J. Jensen

There is limited research on the physiological effects of caffeine (CAF) ingestion on exercise performance during acute hypoxia. The aim of the present study was therefore to test the effect of placebo (PLA) and CAF (4.5 mg/kg) on double poling (DP) performance during acute hypoxia. Thirteen male subelite cross-country skiers (V̇o2max 72.6 ± 5.68 ml·kg−1·min−1) were included. Performance was assessed as 1) an 8-km cross-country DP time-trial (C-PT), and 2) time until task failure at a set workload equal to ∼90% of DP V̇o2max. Testing was carried out in a hypobaric chamber, at 800 mbar (Pio2: ∼125 mmHg) corresponding to ∼2,000 m above sea level in a randomized double-blinded, placebo-controlled, cross-over design. CAF improved time to task failure from 6.10 ± 1.40 to 7.22 ± 1.30 min ( P < 0.05) and velocity the first 4 km ( P < 0.05) but not overall time usage for the 8-km C-PT. During submaximal exercise subjects reported lower pain in arms and rate of perceived exertion (RPE) following CAF ingestion. Throughout C-PTs similar RPE and pain was shown between treatments. However, higher heart rate was observed during the CAF 8 km (187 ± 7 vs. 185 ± 7; P < 0.05) and 90% C-PT (185 ± 7 vs. 181 ± 9) associated with increased ventilation, blood lactate, glucose, adrenaline, decreased pH, and bicarbonate. The present study demonstrates for the first time that CAF ingestion improves DP time to task failure although not consistently time trial performance during acute exposure to altitude. Mechanisms underpinning improvements seem related to reduced pain RPE and increased heart rate during CAF C-PTs.


2020 ◽  
Vol 15 (4) ◽  
pp. 483-488 ◽  
Author(s):  
Philip Hurst ◽  
Lieke Schipof-Godart ◽  
Florentina Hettinga ◽  
Bart Roelands ◽  
Chris Beedie

Purpose: To investigate the placebo effect of caffeine on pacing strategy and performance over 1000-m running time trials using a balanced placebo design. Methods: Eleven well-trained male middle-distance athletes performed seven 1000-m time trials (1 familiarization, 2 baseline, and 4 experimental). Experimental trials consisted of the administration of 4 randomized treatments: informed caffeine/received caffeine, informed caffeine/received placebo, informed placebo/received caffeine, and informed placebo/received placebo. Split times were recorded at 200, 400, 600, 800, and 1000 m, and peak heart rate and rating of perceived exertion were recorded at the completion of the trial. Results: Relative to baseline, participants ran faster during informed caffeine/received caffeine (d = 0.42) and informed caffeine/received placebo (d = 0.43). These changes were associated with an increased pace during the first half of the trial. No differences were shown in pacing or performance between baseline and the informed placebo/received caffeine (d = 0.21) and informed placebo/received placebo (d = 0.10). No differences were reported between treatments for peak heart rate (η2 = .084) and rating of perceived exertion (η2 = .009). Conclusions: The results indicate that the effect of believing to have ingested caffeine improved performance to the same magnitude as actually receiving caffeine. These improvements were associated with an increase in pace during the first half of the time trial.


Author(s):  
Erik P. Andersson ◽  
Irina Hämberg ◽  
Paulo Cesar Do Nascimento Salvador ◽  
Kerry McGawley

Abstract Purpose This study aimed to compare physiological factors and cycle characteristics during cross-country (XC) roller-skiing at matched inclines and speeds using the double-poling (DP) and diagonal-stride (DS) sub-techniques in junior female and male XC skiers. Methods Twenty-three well-trained junior XC skiers (11 women, 12 men; age 18.2 ± 1.2 yr.) completed two treadmill roller-skiing tests in a randomized order using either DP or DS. The exercise protocols were identical and included a 5 min warm-up, 4 × 5 min submaximal stages, and an incremental test to exhaustion, all performed at a 5° incline. Results No significant three-way interactions were observed between sex, submaximal exercise intensity, and sub-technique. For the pooled sample, higher values were observed for DP versus DS during submaximal exercise for the mean oxygen uptake kinetics response time (33%), energy cost (18%), heart rate (HR) (9%), blood lactate concentration (5.1 versus 2.1 mmol·L−1), rating of perceived exertion (12%), and cycle rate (25%), while cycle length was lower (19%) (all P < 0.001). During the time-to-exhaustion (TTE) test, peak oxygen uptake ($$\dot{V}$$ V ˙ O2peak), peak HR, and peak oxygen pulse were 8%, 2%, and 6% lower, respectively, for DP than DS, with a 29% shorter TTE during DP (pooled data, all P < 0.001). Conclusion In well-trained junior XC skiers, DP was found to exert a greater physiological load than DS during uphill XC roller-skiing at submaximal intensities. During the TTE test, both female and male athletes were able to ski for longer and reached markedly higher $$\dot{V}$$ V ˙ O2peak values when using DS compared to DP.


2009 ◽  
Vol 19 (4) ◽  
pp. 400-409 ◽  
Author(s):  
Milou Beelen ◽  
Jort Berghuis ◽  
Ben Bonaparte ◽  
Sam B. Ballak ◽  
Asker E. Jeukendrup ◽  
...  

It has been reported previously that mouth rinsing with a carbohydrate-containing solution can improve cycling performance. The purpose of the current study was to investigate the impact of such a carbohydrate mouth rinse on exercise performance during a simulated time trial in a more practical, postprandial setting. Fourteen male endurance-trained athletes were selected to perform 2 exercise tests in the morning after consuming a standardized breakfast. They performed an ~1-hr time trial on a cycle ergometer while rinsing their mouths with either a 6.4% maltodextrin solution (CHO) or water (PLA) after every 12.5% of the set amount of work. Borg’s rating of perceived exertion (RPE) was assessed after every 25% of the set amount of work, and power output and heart rate were recorded continuously throughout the test. Performance time did not differ between treatments and averaged 68.14 ± 1.14 and 67.52 ± 1.00 min in CHO and PLA, respectively (p = .57). In accordance, average power output (265 ± 5 vs. 266 ± 5 W, p = .58), heart rate (169 ± 2 vs. 168 ± 2 beats/min, p = .43), and RPE (16.4 ± 0.3 vs. 16.7 ± 0.3 W, p = .26) did not differ between treatments. Furthermore, after dividing the trial into 8s, no differences in power output, heart rate, or perceived exertion were observed over time between treatments. Carbohydrate mouth rinsing does not improve time-trial performance when exercise is performed in a practical, postprandial setting.


2007 ◽  
Vol 2 (2) ◽  
pp. 201-211 ◽  
Author(s):  
Thomas Zochowski ◽  
Elizabeth Johnson ◽  
Gordon G. Sleivert

Context:Warm-up before athletic competition might enhance performance by affecting various physiological parameters. There are few quantitative data available on physiological responses to the warm-up, and the data that have been reported are inconclusive. Similarly, it has been suggested that varying the recovery period after a standardized warm-up might affect subsequent performance.Purpose:To determine the effects of varying post-warm-up recovery time on a subsequent 200-m swimming time trial.Methods:Ten national-caliber swimmers (5 male, 5 female) each swam a 1500-m warm-up and performed a 200-m time trial of their specialty stroke after either 10 or 45 min of passive recovery. Subjects completed 1 time trial in each condition separated by 1 wk in a counterbalanced order. Blood lactate and heart rate were measured immediately after warm-up and 3 min before, immediately after, and 3 min after the time trial. Rating of perceived exertion was measured immediately after the warm-up and time trial.Results:Time-trial performance was significantly improved after 10 min as opposed to 45 min recovery (136.80 ± 20.38 s vs 138.69 ± 20.32 s, P < .05). There were no significant differences between conditions for heart rate and blood lactate after the warm-up. Pre-time-trial heart rate, however, was higher in the 10-min than in the 45-min rest condition (109 ± 14 beats/min vs 94 ± 21 beats/min, P < .05).Conclusions:A post-warm-up recovery time of 10 min rather than 45 min is more beneficial to 200-m swimming time-trial performance.


2017 ◽  
Vol 57 (1) ◽  
pp. 139-146 ◽  
Author(s):  
James Fisher ◽  
Thomas Clark ◽  
Katherine Newman-Judd ◽  
Josh Arnold ◽  
James Steele

AbstractTime-trials represent an ecologically valid approach to assessment of endurance performance. Such information is useful in the application of testing protocols and estimation of sample sizes required for research/magnitude based inference methods. The present study aimed to investigate the intra-subject variability of 5 km time-trial running performance in trained runners. Six competitive trained male runners (age = 33.8 ± 10.1 years; stature = 1.78 ± 0.01 m; body mass = 69.0 ± 10.4 kg, $\it V^{.}$ O2max = 62.6 ± 11.0 ml·kg·min-1) completed an incremental exercise test to volitional exhaustion followed by 5 x 5 km time-trials (including a familiarisation trial), individually spaced by 48 hours. The time taken to complete each trial, heart rate, rating of perceived exertion and speed were all assessed. Intra-subject absolute standard error of measurement and the coefficient of variance were calculated for time-trial variables in addition to the intra-class correlation coefficient for time taken to complete the time-trial. For the primary measure time, results showed a coefficient of variation score across all participants of 1.5 ± 0.59% with an intra-class correlation coefficient score of 0.990. Heart rate, rating of perceived exertion and speed data showed a variance range between 0.8 and 3.05%. It was concluded that when compared with related research, there was observed low intra-subject variability in trained runners over a 5 km distance. This supports the use of this protocol for 5 km time-trial performance for assessment of nutritional strategies, ergogenic aids or training interventions on endurance running performance.


Author(s):  
Kelsey Denby ◽  
Ronald Caruso ◽  
Emily Schlicht ◽  
Stephen J. Ives

Environmental heat stress poses significant physiological challenge and impairs exercise performance. We investigated the impact of wrist percooling on running performance and physiological and perceptual responses in the heat. In a counterbalanced design, 13 trained males (33 ± 9 years, 15 ± 7% body fat, and maximal oxygen consumption, VO2max 59 ± 5 mL/kg/min) completed three 10 km running time trials (27 °C, 60% relative humidity) while wearing two cooling bands: (1) both bands were off (off/off), (2) one band on (off/on), (3) both bands on (on/on). Heart rate (HR), HR variability (HRV), mean arterial pressure (MAP), core temperature (TCO), thermal sensation (TS), and fatigue (VAS) were recorded at baseline and recovery, while running speed (RS) and rating of perceived exertion (RPE) were collected during the 10 km. Wrist cooling had no effect (p > 0.05) at rest, except modestly increased HR (3–5 ∆beats/min, p < 0.05). Wrist percooling increased (p < 0.05) RS (0.25 ∆mi/h) and HR (5 ∆beats/min), but not TCO (∆ 0.3 °C), RPE, or TS. Given incomplete trials, the distance achieved at 16 min was not different between conditions (off/off 1.96 ± 0.16 vs. off/on 1.98 ± 0.19 vs. on/on 1.99 ± 0.24 miles, p = 0.490). During recovery HRV, MAP, or fatigue were unaffected (p > 0.05). We demonstrate that wrist percooling elicited a faster running speed, though this coincides with increased HR; although, interestingly, sensations of effort and thermal comfort were unaffected, despite the faster speed and higher HR.


2017 ◽  
Vol 12 (2) ◽  
pp. 211-217 ◽  
Author(s):  
Thomas Losnegard ◽  
Håvard Myklebust ◽  
Øyvind Skattebo ◽  
Hans Kristian Stadheim ◽  
Øyvind Sandbakk ◽  
...  

Purpose:In the double-poling (DP) cross-country-skiing technique, propulsive forces are transferred solely through the poles. The aim of the current study was to investigate how pole length influences DP performance, O2 cost, and kinematics during treadmill roller skiing.Methods:Nine male competitive cross-country skiers (24 ± 3 y, 180 ± 5 cm, 72 ± 5 kg, VO2max running 76 ± 6 mL · kg–1 · min–1) completed 2 identical test protocols using self-selected (84% ± 1% of body height) and long poles (self-selected + 7.5 cm; 88% ± 1% of body height) in a counterbalanced fashion. Each test protocol included a 5-min warm-up (2.5 m/s; 2.5°) and three 5-min submaximal sessions (3.0, 3.5, and 4.0 m/s; 2.5°) for assessment of O2 cost, followed by a selfpaced 1000-m time trial (~3 min, >5.0 m/s; 2.5°). Temporal patterns and kinematics were assessed using accelerometers and 2D video.Results:Long poles reduced 1000-m time (mean ± 90% confidence interval; –1.0% ± 0.7%, P = .054) and submaximal O2 cost (–2.7% ± 1.0%, P = .002) compared with self-selected poles. The center-of-mass (CoM) vertical range of displacement tended to be smaller for long than for self-selected poles (23.3 ± 3.0 vs 24.3 ± 3.0 cm, P = .07). Cycle and reposition time did not differ between pole lengths at any speeds tested, whereas poling time tended to be shorter for self-selected than for long poles at the lower speeds (≤3.5 m/s, P ≤ .10) but not at the higher speeds (≥4.0 m/s, P ≥ .23).Conclusions:DP 1000-m time, submaximal O2 cost, and CoM vertical range of displacement were reduced in competitive cross-country skiers using poles 7.5 cm longer than self-selected ones.


Sign in / Sign up

Export Citation Format

Share Document