scholarly journals The Influence of Pole Length on Performance, O2 Cost, and Kinematics in Double Poling

2017 ◽  
Vol 12 (2) ◽  
pp. 211-217 ◽  
Author(s):  
Thomas Losnegard ◽  
Håvard Myklebust ◽  
Øyvind Skattebo ◽  
Hans Kristian Stadheim ◽  
Øyvind Sandbakk ◽  
...  

Purpose:In the double-poling (DP) cross-country-skiing technique, propulsive forces are transferred solely through the poles. The aim of the current study was to investigate how pole length influences DP performance, O2 cost, and kinematics during treadmill roller skiing.Methods:Nine male competitive cross-country skiers (24 ± 3 y, 180 ± 5 cm, 72 ± 5 kg, VO2max running 76 ± 6 mL · kg–1 · min–1) completed 2 identical test protocols using self-selected (84% ± 1% of body height) and long poles (self-selected + 7.5 cm; 88% ± 1% of body height) in a counterbalanced fashion. Each test protocol included a 5-min warm-up (2.5 m/s; 2.5°) and three 5-min submaximal sessions (3.0, 3.5, and 4.0 m/s; 2.5°) for assessment of O2 cost, followed by a selfpaced 1000-m time trial (~3 min, >5.0 m/s; 2.5°). Temporal patterns and kinematics were assessed using accelerometers and 2D video.Results:Long poles reduced 1000-m time (mean ± 90% confidence interval; –1.0% ± 0.7%, P = .054) and submaximal O2 cost (–2.7% ± 1.0%, P = .002) compared with self-selected poles. The center-of-mass (CoM) vertical range of displacement tended to be smaller for long than for self-selected poles (23.3 ± 3.0 vs 24.3 ± 3.0 cm, P = .07). Cycle and reposition time did not differ between pole lengths at any speeds tested, whereas poling time tended to be shorter for self-selected than for long poles at the lower speeds (≤3.5 m/s, P ≤ .10) but not at the higher speeds (≥4.0 m/s, P ≥ .23).Conclusions:DP 1000-m time, submaximal O2 cost, and CoM vertical range of displacement were reduced in competitive cross-country skiers using poles 7.5 cm longer than self-selected ones.

2017 ◽  
Vol 33 (3) ◽  
pp. 197-202 ◽  
Author(s):  
Franziska Onasch ◽  
Anthony Killick ◽  
Walter Herzog

The aim of this study was to determine the effects of pole length on energy cost and kinematics in cross country double poling. Seven sub-elite male athletes were tested using pole sets of different lengths (ranging between 77% and 98% of participants’ body height). Tests were conducted on a treadmill, set to a 2% incline and an approximate racing speed. Poling forces, contact times, and oxygen uptake were measured throughout the testing. Pole length was positively correlated with ground contact time (r = .57, p < .001) and negatively correlated with poling frequency (r = −.48, p = .003). Pole length was also positively correlated with pole recovery time and propulsive impulse produced per poling cycle (r = .36, p = .031; r = .35, p = .042, respectively). Oxygen uptake and pole length were negatively correlated (r = −.51, p = .004). This acute study shows that increasing pole length for double poling in sub-elite cross country skiers under the given conditions seems to change the poling mechanics in distinct ways, resulting in a more efficient poling action by decreasing an athlete’s metabolic cost.


PLoS ONE ◽  
2021 ◽  
Vol 16 (8) ◽  
pp. e0256662
Author(s):  
Rune Kjøsen Talsnes ◽  
Guro Strøm Solli ◽  
Jan Kocbach ◽  
Per-Øyvind Torvik ◽  
Øyvind Sandbakk

The purpose of the present study was to investigate how various laboratory- and field-based tests predict on-snow cross-country (XC) skiing and roller-skiing performance. Thirty-three national-level male XC skiers (19.0±2.5 years, maximal oxygen uptake [VO2max] 70.8±4.7 mL·min-1·kg-1) performed a 13.6-km roller-ski skating competition tracked by a global positioning system (GPS), which together with individual distance International Ski Federation (FIS) points was used to assess their performance level. On separate days, time in a 6.4-km uphill running time-trial (RUN-TT) and 1.3-km uphill roller-ski double-poling time-trial (DP-TT) was measured in the field and performance indices determined while running and roller-ski skating in the laboratory. The mean finishing times for the RUN-TT and the DP-TT showed moderate to large correlations with distance FIS points and performance in the roller-ski skating competition (r = 0.56–0.72; all p<0.05). RUN-TT was more strongly correlated with distance FIS points than DP-TT (r = 0.72 versus 0.56; p<0.05). Performance indices and VO2max in incremental running and roller-ski skating in the laboratory showed large to very large correlations with distance FIS points and roller-skiing performance (r = 0.50–0.90; all p<0.05). Performance indices and VO2max in running tended to be more strongly correlated with roller-skiing performance than corresponding values obtained while roller-ski skating (all p<0.10). The present findings suggest that both laboratory performance indices and field-based performance tests provide valid predictions of XC skiing and roller-skiing performance in a heterogeneous group of male XC skiers, with test values obtained in running tending to be more strongly correlated with XC skiing performance than those found for technique-specific modalities on roller skis. However, more sophisticated and mode-specific testing might be required for more homogenous groups of elite XC skiers.


1988 ◽  
Vol 4 (1) ◽  
pp. 49-58 ◽  
Author(s):  
Gerald A. Smith ◽  
Jill McNitt-Gray ◽  
Richard C. Nelson

Cross-country ski technique is undergoing rapid evolution. Alternate stride skating was the dominant technique during the 1985–86 racing season (double poling is synchronized with the “strong” side skate; no poling occurs with the “weak” side skate). High-speed films were made of elite male racers at the Holmenkollen World Cup races, Oslo, Norway (March 1986), skating up a 7° hill. Digitized data were filtered and processed to determine three-dimensional coordinates throughout a complete skating cycle. Ten skiers were analyzed, representing a range of performances. Over the 10-km race length, cycle rates for all skiers were similar; however, cycle lengths were significantly related to cycle velocity. The correlation between cycle velocity and length was r = 0.85. Ski angles were found to be asymmetrical. Weak-side ski angles were negatively related to cycle velocity; strong-side ski angles were similar for all skiers. Center of mass (CM) position throughout the cycle exhibited characteristic differences between faster and slower skiers. CM velocity vector direction was related to cycle velocity. Thus, faster skiers tended to maintain CM motion more nearly aligned with the forward direction.


2020 ◽  
Vol 15 (6) ◽  
pp. 884-891
Author(s):  
Erik Trøen ◽  
Bjarne Rud ◽  
Øyvind Karlsson ◽  
Camilla Høivik Carlsen ◽  
Matthias Gilgien ◽  
...  

Purpose: To investigate how self-selected pole length (PL) of ∼84% (PL84%) compared with ∼90% (PL90%) of body height influenced performance during a 700-m time trial with undulating terrain on snow. Methods: Twenty-one cross-country skiers, 7 of whom were women, performed 4 trials at a maximal effort in a counterbalanced fashion with PL84% and PL90% separated by 20-minute breaks between trials. In trials I and II, only double poling was allowed, while in trials III and IV, skiers used self-selected classical subtechniques. Continuous speed, cyclic parameters, and heart rate were collected using microsensors in addition to a post-time-trial rating of perceived exertion (RPE). Results: The 700-m times with only double poling were significantly shorter with PL90% than PL84% (mean ± 95% confidence limits –1.6% ± 1.0%). Segment analyses showed higher speed with PL90% in uphill sections than with PL84% (3.7% ± 2.1%), with the greatest difference found for the female skiers (5.6% ± 2.9%). In contrast, on flat terrain at high skiing speeds, speed was reduced with PL90% compared with PL84% (–1.5% ± 1.4%); this was only significant for the male skiers. During free choice of classical subtechniques, PL did not influence performance in any segments, choice of subtechnique, or cycle rate during the trials. No differences in rating of perceived exertion or heart rate between PLs were found. Conclusions: PL90% improved performance in uphills at low speeds when using double poling but hindered performance on flat terrain and at higher speeds compared with self-selected PLs. Choice of PL should, therefore, be based on racecourse topography, preferred subtechniques, and the skier’s physiological and technical abilities.


2020 ◽  
Vol 15 (7) ◽  
pp. 941-948
Author(s):  
Guro Strøm Solli ◽  
Pål Haugnes ◽  
Jan Kocbach ◽  
Roland van den Tillaar ◽  
Per Øyvind Torvik ◽  
...  

Purpose: To compare the effects of a short specific and a long traditional warm-up on time-trial performance in cross-country skiing sprint using the skating style, as well as related differences in pacing strategy and physiological responses. Methods: In total, 14 (8 men and 6 women) national-level Norwegian cross-country skiers (age 20.4 [3.1] y; VO2max 65.9 [5.7] mL/kg/min) performed 2 types of warm-up (short, 8 × 100 m with gradual increase from 60% to 95% of maximal speed with a 1-min rest between sprints, and long, ∼35 min at low intensity, including 5 min at moderate and 3 min at high intensity) in a randomized order with 1 hour and 40 minutes of rest between tests. Each warm-up was followed by a 1.3-km sprint time trial, with continuous measurements of speed and heart rate. Results: No difference in total time for the time trial between the short and long warm-ups (199 [17] vs 200 [16] s; P = .952), or average speed and heart rate for the total course, or in the 6 terrain sections (all P < .41, η2 < .06) was found. There was an effect of order, with total time-trial time being shorter during test 2 than test 1 (197 [16] vs 202 [16] s; P = .004). No significant difference in blood lactate and rating of perceived exertion was found between the short versus long warm-ups or between test 1 and test 2 at any of the measurement points during the test day (P < .58, η2 > .01). Conclusions: This study indicates that a short specific warm-up could be as effective as a long traditional warm-up during a sprint time trial in cross-country skiing.


Author(s):  
Stefan Pettersson ◽  
Fredrik Edin ◽  
Linda Bakkman ◽  
Kerry McGawley

Abstract Background Whilst the ergogenic effects of carbohydrate intake during prolonged exercise are well-documented, few investigations have studied the effects of carbohydrate ingestion during cross-country skiing, a mode of exercise that presents unique metabolic demands on athletes due to the combined use of large upper- and lower-body muscle masses. Moreover, no previous studies have investigated exogenous carbohydrate oxidation rates during cross-country skiing. The current study investigated the effects of a 13C-enriched 18% multiple-transportable carbohydrate solution (1:0.8 maltodextrin:fructose) with additional gelling polysaccharides (CHO-HG) on substrate utilization and gastrointestinal symptoms during prolonged cross-country skiing exercise in the cold, and subsequent double-poling time-trial performance in ~ 20 °C. Methods Twelve elite cross-country ski athletes (6 females, 6 males) performed 120-min of submaximal roller-skiing (69.3 ± 2.9% of $$ \dot{\mathrm{V}} $$V̇O2peak) in −5 °C while receiving either 2.2 g CHO-HG·min− 1 or a non-caloric placebo administered in a double-blind, randomized manner. Whole-body substrate utilization and exogenous carbohydrate oxidation was calculated for the last 60 min of the submaximal exercise. The maximal time-trial (2000 m for females, 2400 m for males) immediately followed the 120-min submaximal bout. Repeated-measures ANOVAs with univariate follow-ups were conducted, as well as independent and paired t-tests, and significance was set at P < 0.05. Data are presented as mean ± SD. Results Exogenous carbohydrate oxidation contributed 27.6 ± 6.6% to the total energy yield with CHO-HG and the peak exogenous carbohydrate oxidation rate reached 1.33 ± 0.27 g·min− 1. Compared to placebo, fat oxidation decreased by 9.5 ± 4.8% with CHO-HG, total carbohydrate oxidation increased by 9.5 ± 4.8% and endogenous carbohydrate utilization decreased by 18.1 ± 6.4% (all P < 0.05). No severe gastrointestinal symptoms were reported in either trial and euhydration was maintained in both trials. Time-trial performance (8.4 ± 0.4 min) was not improved following CHO-HG compared to placebo (− 0.8 ± 3.5 s; 95% confidence interval − 3.0 to 1.5 s; P = 0.46). No sex differences were identified in substrate utilization or relative performance. Conclusions Ingestion of an 18% multiple-transportable carbohydrate solution with gelling polysaccharides was found to be well-tolerated during 120 min of submaximal whole-body exercise, but did not improve subsequent maximal double-poling performance.


2019 ◽  
Vol 51 (4) ◽  
pp. 760-772 ◽  
Author(s):  
THOMAS STÖGGL ◽  
OLLI OHTONEN ◽  
MASAKI TAKEDA ◽  
NAOTO MIYAMOTO ◽  
CORY SNYDER ◽  
...  

2021 ◽  
Vol 3 ◽  
Author(s):  
Per-Øyvind Torvik ◽  
Roland van den Tillaar ◽  
Øyvind Sandbakk

Cross-country (XC) skiers employ whole-body exercise to generate speed through poles and skis. The choice of optimal pole and ski lengths are therefore of high importance. The aim of this study was to document pole and ski lengths among elite male and female cross-country skiers in the classical and skating styles and to investigate sex differences in body-height-normalized pole and ski lengths. Our secondary purpose was to correlate body-height-normalized pole and ski lengths with performance level within both sexes. In total, Norwegian men and women (n = 87 and 36, respectively), participating in the Norwegian XC championship 2020, were investigated. Most athletes used poles close to the length allowed by the International Ski Federation (FIS) in the classical style among both sexes, with men using slightly longer poles than women (p &lt; 0.05). Body-height-normalized pole lengths in skating were similar in men and women (around 90% of body height). Women used relatively longer ski lengths than men in both styles (p &lt; 0.05). Women showed moderate correlations (r = 0.43, p &lt; 0.05) between body-height-normalized pole lengths and sprint performance. Male and female cross-country skiers use as long classical ski poles as possible within the current regulations, while they use skating poles similar to recommendations given by the industry. The fact that men use longer body-height-normalized poles than women, where there is a correlation between pole length and sprint performance, indicate that faster women are able to better utilize the potential of using longer poles when double-poling. However, while women use relatively longer skis than men, no correlation with performance occurred for any of the sexes.


2012 ◽  
Vol 113 (6) ◽  
pp. 1385-1394 ◽  
Author(s):  
Johnny Nilsson ◽  
Fredrik Tinmark ◽  
Kjartan Halvorsen ◽  
Anton Arndt

2019 ◽  
Vol 14 (9) ◽  
pp. 1190-1199 ◽  
Author(s):  
Øyvind Skattebo ◽  
Thomas Losnegard ◽  
Hans Kristian Stadheim

Purpose: Long-distance cross-country skiers specialize to compete in races >50 km predominantly using double poling (DP). This emphasizes the need for highly developed upper-body endurance capacities and an efficient DP technique. The aim of this study was to investigate potential effects of specialization by comparing physiological capacities and kinematics in DP between long-distance skiers and skiers competing using both techniques (skating/classic) in several competition formats (“all-round skiers”). Methods: Seven male long-distance (32 [6] y, 183 [6] cm, 76 [5] kg) and 6 all-round (25 [3] y, 181 [5] cm, 75 [6] kg) skiers at high international levels conducted submaximal workloads and an incremental test to exhaustion for determination of peak oxygen uptake (VO2peak) and time to exhaustion (TTE) in DP and running. Results: In DP and running maximal tests, TTE showed no difference between groups. However, long-distance skiers had 5–6% lower VO2peak in running (81 [5] vs 85 [3] mL·kg−1·min−1; P = .07) and DP (73 [3] vs 78 [3] mL·kg−1·min−1; P < .01) than all-round skiers. In DP, long-distance skiers displayed lower submaximal O2 cost than all-round skiers (3.8 ± 3.6%; P < .05) without any major differences in cycle times or cyclic patterns of joint angles and center of mass. Lactate concentration over a wide range of speeds (45–85% of VO2peak) did not differ between groups, even though each workload corresponded to a slightly higher percentage of VO2peak for long-distance skiers (effect size: 0.30–0.68). Conclusions: The long-distance skiers displayed lower VO2peak but compensated with lower O2 cost to perform equally with the all-round skiers on a short TTE test in DP. Furthermore, similar submaximal lactate concentration and reduced O2 cost could be beneficial in sustaining high skiing speeds in long-duration competitions.


Sign in / Sign up

Export Citation Format

Share Document