The Functional Utilization of Propulsive Capacity During Human Walking

2018 ◽  
Vol 34 (6) ◽  
pp. 474-482 ◽  
Author(s):  
Katie A. Conway ◽  
Randall G. Bissette ◽  
Jason R. Franz

Aging and many gait pathologies are characterized by reduced propulsive forces and ankle moment and power generation during trailing leg push-off in walking. Despite those changes, we posit that many individuals retain an underutilized reserve for enhancing push-off intensity during walking that may be missed using conventional dynamometry. By using a maximum ramped impeding force protocol and maximum speed walking, we gained mechanistic insight into the factors that govern push-off intensity and the available capacity thereof during walking in young subjects. We discovered in part that young subjects walking at their preferred speed retain a reserve capacity for exerting larger propulsive forces of 49%, peak ankle power of 43%, and peak ankle moment of 22% during push-off—the latter overlooked by maximum isometric dynamometry. We also provide evidence that these reserve capacities are governed at least in part by the neuromechanical behavior of the plantarflexor muscles, at least with regard to ankle moment generation. We envision that a similar paradigm used to quantify propulsive reserves in older adults or people with gait pathology would empower the more discriminate and personalized prescription of gait interventions seeking to improve push-off intensity and thus walking performance.

2020 ◽  
Vol 28 (1) ◽  
pp. 1-8 ◽  
Author(s):  
Katie A. Conway ◽  
Jason R. Franz

The authors elucidated functional limitations in older adult gait by increasing horizontal impeding forces and walking speed to their maximums compared with dynamometry and with data from their young counterparts. Specifically, the authors investigated which determinants of push-off intensity represent genuine functionally limiting impairments in older adult gait versus biomechanical changes that do not directly limit walking performance. They found that older adults walked at their preferred speed with hallmark deficits in push-off intensity. These subjects were fully capable of overcoming deficits in propulsive ground reaction force, trailing limb positive work, trailing leg and hip extension, and ankle power generation when the propulsive demands of walking were increased to maximum. Of the outcomes tested, age-related deficits in ankle moment emerged as the lone genuine functionally limiting impairment in older adults. Distinguishing genuine functional limitations from age-related differences masquerading as limitations represents a critical step toward the development and prescription of effective interventions.


PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0261862
Author(s):  
Sarah A. Roelker ◽  
Rebekah R. Koehn ◽  
Elena J. Caruthers ◽  
Laura C. Schmitt ◽  
Ajit M. W. Chaudhari ◽  
...  

Background Older adults and individuals with knee osteoarthritis (KOA) often exhibit reduced locomotor function and altered muscle activity. Identifying age- and KOA-related changes to the modular control of gait may provide insight into the neurological mechanisms underlying reduced walking performance in these populations. The purpose of this pilot study was to determine if the modular control of walking differs between younger and older adults without KOA and adults with end-stage KOA. Methods Kinematic, kinetic, and electromyography data were collected from ten younger (23.5 ± 3.1 years) and ten older (63.5 ± 3.4 years) adults without KOA and ten adults with KOA (64.0 ± 4.0 years) walking at their self-selected speed. Separate non-negative matrix factorizations of 500 bootstrapped samples determined the number of modules required to reconstruct each participant’s electromyography. One-way Analysis of Variance tests assessed the effect of group on walking speed and the number of modules. Kendall rank correlations (τb) assessed the association between the number of modules and self-selected walking speed. Results The number of modules required in the younger adults (3.2 ± 0.4) was greater than in the individuals with KOA (2.3 ± 0.7; p = 0.002), though neither cohorts’ required number of modules differed significantly from the unimpaired older adults (2.7 ± 0.5; p ≥ 0.113). A significant association between module number and walking speed was observed (τb = 0.350, p = 0.021) and individuals with KOA walked significantly slower (0.095 ± 0.21 m/s) than younger adults (1.24 ± 0.15 m/s; p = 0.005). Individuals with KOA also exhibited altered module activation patterns and composition (which muscles are associated with each module) compared to unimpaired adults. Conclusion These findings suggest aging alone may not significantly alter modular control; however, the combined effects of knee osteoarthritis and aging may together impair the modular control of gait.


2020 ◽  
Author(s):  
Sarah A. Roelker ◽  
Rebekah R. Koehn ◽  
Elena J. Caruthers ◽  
Laura C. Schmitt ◽  
Ajit M.W. Chaudhari ◽  
...  

ABSTRACTOlder adults and individuals with knee osteoarthritis (KOA) often exhibit reduced locomotor function and altered muscle activity. Identifying age- and KOA-related changes to the modular control of gait may provide insight into the neurological mechanisms underlying reduced walking performance in these populations. The purpose of this pilot study was to determine if the modular control of walking differs between younger and older adults without KOA and adults with end-stage KOA. Kinematic, kinetic, and electromyography (EMG) data were collected from ten younger (23.9 ± 2.8 years) and ten older (62.4 ± 2.6 years) adults without KOA and ten KOA patients (63.5 ± 3.4 years) walking at their self-selected speed. Separate non-negative matrix factorizations determined the number of modules required to reconstruct each participant’s EMG. There was no significant difference (p = 0.056) in the number of required modules between younger adults (4.1 ± 1.0), older adults without KOA (3.4 ± 0.8), and KOA patients (3.1 ± 0.6). However, a significant association between module number and walking speed was observed (r = 0.401; p = 0.028) and the KOA patients walked significantly slower (1.01 ± 0.16 m/s) than the younger adults (1.24 ± 0.18 m/s; p = 0.026). In addition, KOA patients exhibited altered module activation timing profiles and composition (which muscles are associated with each module) characterized by increased muscle co-activity compared to unimpaired younger and older adults who required the same number of modules. Thus, disease-related changes in neuromuscular control strategy may be associated with functional deficits in KOA patients.NEW AND NOTEWORTHYDifferentiating between age- and disease-related changes in motor control may provide insight into mechanisms underlying impaired walking performance in individuals with knee osteoarthritis. There was no significant difference in the number of modules required by individuals with knee osteoarthritis and unimpaired younger and older adults. However, knee osteoarthritis patients exhibited altered module composition and timing characterized by increased muscle co-activity, which suggests a change in underlying neural control strategy may be associated with knee osteoarthritis.


RSC Advances ◽  
2021 ◽  
Vol 11 (34) ◽  
pp. 20961-20969
Author(s):  
Yunqing He ◽  
Wanli Nie ◽  
Ying Xue ◽  
Qishan Hu

Hydrosilylation or amination products? It depends on water amount and nucleophiles like excess water or produced/added amines.


2021 ◽  
Vol 154 (12) ◽  
pp. 124313
Author(s):  
L. M. Hunnisett ◽  
P. F. Kelly ◽  
S. Bleay ◽  
F. Plasser ◽  
R. King ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document