Identification of Postconcussion Dual-Task Gait Abnormalities Using Normative Reference Values

2019 ◽  
Vol 35 (4) ◽  
pp. 290-296 ◽  
Author(s):  
David R. Howell ◽  
Thomas A. Buckley ◽  
Brant Berkstresser ◽  
Francis Wang ◽  
William P. Meehan

The purpose of this study was to identify the rate of abnormal single-task and dual-task gait performance following concussion compared to uninjured controls using previously established normative reference values. The authors examined athletes with a concussion (n = 54; mean age = 20.3 [1.1] y, 46% female, tested 2.9 [1.5] d postinjury), and healthy controls were tested during their preseason baseline examination (n = 60; mean age = 18.9 [0.7] y, 37% female). Participants completed an instrumented single-/dual-task gait evaluation. Outcome variables included average walking speed, cadence, and step length. A significantly greater number of those with concussion walked with abnormal dual-task gait speed compared with the control group (56% vs 30%,P = .01). After adjusting for potential confounding variables (age, concussion history, symptom severity, and sleep), concussion was associated with lower dual-task gait speed (β = −0.150; 95% confidence interval [CI] = −0.252 to −0.047), cadence (β = −8.179; 95% CI = −14.49 to −1.871), and stride length (β = −0.109; 95% CI = −0.204 to −0.014). Although group analyses indicated that those with a concussion performed worse on single-task and dual-task gait compared with controls, a higher rate of abnormal gait was detected for the concussion group compared with the control group for dual-task gait speed only. Dual-task gait speed, therefore, may be considered as a measure to compare against normative values to detect postconcussion impairments.

Gerontology ◽  
2021 ◽  
pp. 1-10
Author(s):  
He Zhou ◽  
Catherine Park ◽  
Mohammad Shahbazi ◽  
Michele K. York ◽  
Mark E. Kunik ◽  
...  

<b><i>Background:</i></b> Cognitive frailty (CF), defined as the simultaneous presence of cognitive impairment and physical frailty, is a clinical symptom in early-stage dementia with promise in assessing the risk of dementia. The purpose of this study was to use wearables to determine the most sensitive digital gait biomarkers to identify CF. <b><i>Methods:</i></b> Of 121 older adults (age = 78.9 ± 8.2 years, body mass index = 26.6 ± 5.5 kg/m<sup>2</sup>) who were evaluated with a comprehensive neurological exam and the Fried frailty criteria, 41 participants (34%) were identified with CF and 80 participants (66%) were identified without CF. Gait performance of participants was assessed under single task (walking without cognitive distraction) and dual task (walking while counting backward from a random number) using a validated wearable platform. Participants walked at habitual speed over a distance of 10 m. A validated algorithm was used to determine steady-state walking. Gait parameters of interest include steady-state gait speed, stride length, gait cycle time, double support, and gait unsteadiness. In addition, speed and stride length were normalized by height. <b><i>Results:</i></b> Our results suggest that compared to the group without CF, the CF group had deteriorated gait performances in both single-task and dual-task walking (Cohen’s effect size <i>d</i> = 0.42–0.97, <i>p</i> &#x3c; 0.050). The largest effect size was observed in normalized dual-task gait speed (<i>d</i> = 0.97, <i>p</i> &#x3c; 0.001). The use of dual-task gait speed improved the area under the curve (AUC) to distinguish CF cases to 0.76 from 0.73 observed for the single-task gait speed. Adding both single-task and dual-task gait speeds did not noticeably change AUC. However, when additional gait parameters such as gait unsteadiness, stride length, and double support were included in the model, AUC was improved to 0.87. <b><i>Conclusions:</i></b> This study suggests that gait performances measured by wearable sensors are potential digital biomarkers of CF among older adults. Dual-task gait and other detailed gait metrics provide value for identifying CF above gait speed alone. Future studies need to examine the potential benefits of gait performances for early diagnosis of CF and/or tracking its severity over time.


Gerontology ◽  
2018 ◽  
Vol 65 (2) ◽  
pp. 164-173 ◽  
Author(s):  
Frederico Pieruccini-Faria ◽  
Yanina Sarquis-Adamson ◽  
Manuel Montero-Odasso

Background: Older adults with Mild Cognitive Impairment (MCI) are at higher risk of falls and injuries, but the underlying mechanism is poorly understood. Inappropriate anticipatory postural adjustments to overcome balance perturbations are affected by cognitive decline. However, it is unknown whether anticipatory gait control to avoid an obstacle is affected in MCI. Objective: Using the dual-task paradigm, we aim to assess whether gait control is affected during obstacle negotiation challenges in older adults with MCI. Methods: Seventy-nine participants (mean age = 72.0 ± 2.7 years; women = 30.3%) from the “Gait and Brain Study” were included in this study (controls = 27; MCI = 52). In order to assess the anticipatory control behaviour for obstacle negotiation, a 6-m electronic walkway embedded with sensors recorded foot prints to measure gait speed and step length variability, during early (3 steps before the late phase) and late (3 steps before the obstacle) pre-crossing phases of an ad hoc obstacle, set at 15% of participant’s height. Participants walked under single- and dual-task gait (counting backwards by 1’s from 100 while walking) conditions. Three-way mixed repeated-measures analysis of variance models examined differences in gait performance between groups when transitioning between pre-crossing phases towards an obstacle during single- and dual-task conditions. Analyses were adjusted for age, sex, years of education, lower limb function, fear of falling, medical status, depressive symptoms, baseline gait speed and executive function. Results: A significant three-way interaction among groups, pre-crossing phases and task showed that participants with MCI attenuated the gait deceleration (p = 0.02) and performed fewer step length adjustments (p = 0.03) when approaching the obstacle compared with controls while dual-tasking. These interactions were attenuated when executive function performance was added as a covariate in the adjusted statistical model. Conclusion: Older adults with MCI attenuate the anticipatory gait adjustments needed to avoid an obstacle when dual-tasking. Deficits in higher-order cognitive processing may limit obstacle negotiation capabilities in MCI populations, being a potential falls risk factor.


2018 ◽  
Vol 62 ◽  
pp. 157-166 ◽  
Author(s):  
Peter C. Fino ◽  
Lucy Parrington ◽  
Will Pitt ◽  
Douglas N. Martini ◽  
James C. Chesnutt ◽  
...  

2020 ◽  
pp. 1-12
Author(s):  
Emily L. Messerschmidt ◽  
Eric E. Hall ◽  
Caroline J. Ketcham ◽  
Kirtida Patel ◽  
Srikant Vallabhajosula

Context: Though previous research has focused on examining the effects of concussion history using a dual-task paradigm, the influence of factors like symptoms (unrelated to concussion), gender, and type of sport on gait in college athletes is unknown. Objective: To examine the effect of concussion history, symptoms, gender, and type of sport (noncontact/limited contact/contact) individually on gait among college athletes. Design: Exploratory cross-sectional study. Setting: Laboratory. Participants: In total, 98 varsity athletes (age, 18.3 [1.0] y; height, 1.79 [0.11] m; mass, 77.5 [19.2] kg; 27 with concussion history, 58 reported at least one symptom, 44 females; 8 played noncontact sports and 71 played contact sports) walked under single- and dual-task (walking while counting backward by 7) conditions. Interventions: Not applicable. Main Outcome Measures: Dual-task cost (DTC; % difference between single task and dual task) of gait speed, cadence, step length and width, percentage of swing and double-support phases, symptom score, and total symptom severity score. Independent samples t tests and 1-way analysis of variance were conducted (α value = .05). Results: Self-reported concussion history resulted in no significant differences (P > .05). Those who reported symptoms at testing time showed significantly greater DTC of step length (mean difference [MD], 2.7%; 95% confidence interval [CI], 0.3% to 5.1%; P = .012), % of swing phase (MD, 1.0%; 95% CI, −0.2 to 2.1%; P = .042), and % of double-support phase (MD, 3.9%; 95% CI, 0.2% to 7.8%; P = .019). Females demonstrated significantly higher DTC of gait speed (MD, 5.3%; 95% CI, 1.3% to 9.3%; P = .005), cadence (MD, 4.0%; 95% CI, 1.4% to 6.5%; P = .002), % of swing phase (MD, 1.2%; 95% CI, 0.1% to 2.3%; P = .019), and % of double-support phase (MD, 4.1%; 95% CI, 0.4% to 7.9%; P = .018). Noncontact sports athletes had significantly greater step width DTC than contact sports athletes (MD, 14.2%; 95% CI, 0.9% to 27.6%; P = .032). Conclusions: Reporting symptoms at testing time may influence gait under dual-task conditions. Additionally, female athletes showed more gait changes during a dual task. Sports medicine professionals should be aware that these variables, while unrelated to injury, may affect an athlete’s gait upon analysis.


2010 ◽  
Vol 90 (2) ◽  
pp. 252-260 ◽  
Author(s):  
Rachel Kizony ◽  
Mindy F. Levin ◽  
Lucinda Hughey ◽  
Claire Perez ◽  
Joyce Fung

Background Gait and cognitive functions can deteriorate during dual tasking, especially in people with neurological deficits. Most studies examining the simultaneous effects of dual tasking on motor and cognitive aspects were not performed in ecological environments. Using virtual reality technology, functional environments can be simulated to study dual tasking. Objectives The aims of this study were to test the feasibility of using a virtual functional environment for the examination of dual tasking and to determine the effects of dual tasking on gait parameters in people with stroke and age-matched controls who were healthy. Design This was a cross-sectional observational study. Methods Twelve community-dwelling older adults with stroke and 10 age-matched older adults who were healthy participated in the study. Participants walked on a self-paced treadmill while viewing a virtual grocery aisle projected onto a screen placed in front of them. They were asked to walk through the aisle (single task) or to walk and select (“shop for”) items according to instructions delivered before or during walking (dual tasking). Results Overall, the stroke group walked slower than the control group in both conditions, whereas both groups walked faster overground than on the treadmill. The stroke group also showed larger variability in gait speed and shorter stride length than the control group. There was a general tendency to increase gait speed and stride length during dual-task conditions; however, a significant effect of dual tasking was found only in one dual-task condition for gait speed and stride duration variability. All participants were able to complete the task with minimal mistakes. Limitations The small size and heterogeneity of the sample were limitations of the study. Conclusions It is feasible to use a functional virtual environment for investigation of dual tasking. Different gait strategies, including an increase or decrease in gait speed, can be used to cope with the increase in cognitive demands required for dual tasking.


2021 ◽  
Author(s):  
Chang Yoon Baek ◽  
Woo Nam Chang ◽  
Beom Yeol Park ◽  
Kyoung Bo Lee ◽  
Kyoung Yee Kang ◽  
...  

Abstract Objective This study aimed to investigate the effects of dual-task gait training using a treadmill on gait ability, dual-task interference, and fall efficacy in people with stroke. Methods Patients with chronic stroke (N = 34) were recruited and randomly allocated to the experimental or control group. Both groups underwent gait training on a treadmill and a cognitive task. In the experimental group, gait training was conducted in conjunction with the cognitive task, whereas in the control group, the training and the cognitive task were conducted separately. Each intervention was provided for 60 minutes, twice a week, for a period of 6 weeks for both groups. The primary outcomes were as follows: gait parameters (speed, stride, variability, and cadence) under single-task and dual-task conditions, correct response rate (CRR) under single-task and dual-task conditions, and dual-task cost (DTC) in gait parameters and CRR. The secondary outcome was the fall efficacy scale. Results Dual-task gait training using a treadmill improved all gait parameters in the dual-task condition, speed, stride, and variability in the single-task condition, and CRR in both conditions. Difference between the groups was observed in speed, stride, and variability in the dual-task condition. Furthermore, dual-task gait training on a treadmill improved DTC in speed, variability, and cadence along with that in CRR, indicating true improvement of DTC, which led to significant improvement in DTC in speed and variability compared with single-task training. Conclusions Dual-task gait treadmill training was more effective in improving gait ability in dual-task training and DTI than single-task training involving gait and cognitive task separately in people with chronic stroke.


Author(s):  
Marek Zak ◽  
Szymon Krupnik ◽  
Waldemar Brola ◽  
Dorota Rebak ◽  
Tomasz Sikorski ◽  
...  

Abstract Background Mild cognitive impairment (MCI) affects 10–20% of the individuals over the age of 65; this proportion being higher in the institutional care facilities than within a general population. Aim To assess whether dual-task cost in the individuals affected by MCI depends exclusively on gait, or possibly some other functional capacity components might also come into play, as compared to the healthy controls also remaining in the institutional care. Methods The study was conducted in five nursing facilities, involving 88 subjects in total, i.e. 44 subjects affected by MCI (mean age of 83.8 years; 34 women (77.3%) and 10 men (22.7%), and 44 healthy controls (mean age 81.67 years; 38 women (84.4%) and 7 men (15.6%). Cognitive functions were assessed through Mini–Mental State Examination (MMSE), while gait by Timed Up and Go Test (TUGT). Gait speed was calculated by the 10 Meter Walk Test, and the fear of falling with the Falls Efficacy Scale International. Dual tasks were assessed by TUGTMAN (Timed Up and Go Test Manual) and TUGCOG (Timed Up and Go Test Cognitive). Dual Task Cost (DTC) of TUGTMAN and TUGTCOG was established. Statistical analyses were completed with STATISTICA Package v. 10. Results Individuals affected by MCI differed significantly from the unaffected ones with regard to their gait test results, when assigned a single-task activity, and dual-task activities, as well as in the gait speed. Dual Task Cost Manual (DTCMAN) in the MCI group was significantly higher, as compared to the subjects unaffected by MCI. Around 25% of the variance of DTCMAN result regarding the MCI group was accounted for by gait performance in the single-task conditions (TUGT). In the case of Dual Task Cost Cognitive (DTCCOG), this value equalled to approx. 10%. A 1% change in DTCMAN corresponded to approx. 0.5 s change in TUGT, whereas a 1% change in DTCCOG entailed approx. 0.35 s change in TUGT walking time. Conclusion Individual functional capacity affected the dual-task performance, especially the motor-motor tasks. Dual-task cost in the subjects affected by MCI was significantly reduced, being more dependent on the gait speed in the motor-motor tasks, which entailed visual memory, than in the motor-cognitive tasks.


2019 ◽  
Author(s):  
Nadeesha Kalyani Hewa Haputhanthirige ◽  
Karen Sullivan ◽  
Gene Moyle ◽  
Sandy Brauer ◽  
Erica Rose Jeffrey ◽  
...  

Abstract Background Gait impairments in Parkinson’s disease (PD) limit independence and quality of life. While dance based interventions could improve gait, further studies are needed to determine if the benefits generalise to different terrains and when dual-tasking. The aim was to perform a feasibility study of the effects of a dance intervention, based on the Dance for PD®(DfPD®) program, on gait under different dual-tasks (verbal fluency, serial subtraction) and surfaces (even, uneven), and to determine if a larger scale follow-up RCT is warranted.Methods A dance group (DG; n = 17; age = 65.8 ± 11.7 years) and a control group (CG: n = 16; age = 67.0 ± 7.7 years) comprised of non-cognitively impaired (Addenbrooke’s score: DG = 93.2 ± 3.6, CG = 92.6 ± 4.3) independently locomoting people with PD (Hoehn & Yahr I-III) participated in the study. The DG undertook a one-hour DfPD®based class, twice weekly for 12 weeks. The CG had treatment as usual. Gait analysis was performed at baseline and post-intervention while walking on two surfaces (even, uneven) under three conditions (regular walking; dual-task: verbal-fluency, serial-subtraction). The data was analysed by means of a linear mixed model. ResultsThe DG improved significantly compared to the CG in gait velocity, cadence, step-length, and stride-length when even surface walking, with and without a dual-task. On the uneven surface the DG walked more cautiously during regular walking but had improved gait velocity, cadence and step-length when performing serial-subtractions. Conclusions DfPD®-based classes produced clinically significant improvement on spatiotemporal gait parameters under dual-task conditions and on uneven surfaces. This could arise from improved movement confidence and coordination; emotional expression; cognitive skills (planning, multitasking), and; utilisation of external movement cues. A large-scale RCT of this program is warranted.Trial registration A protocol for this study has been registered retrospectively at Australian New Zealand Clinical Trials Registry on 12.11.2018. Identifier: ACTRN12618001834246.


2016 ◽  
Vol 2016 ◽  
pp. 1-6 ◽  
Author(s):  
Laurence Seematter-Bagnoud ◽  
Christophe Büla ◽  
Brigitte Santos-Eggimann

Objectives. This study aimed to describe the cross-sectional and longitudinal association between alcohol intake and gait parameters in older persons.Methods. Community-dwelling persons aged 65–70 years (N=807). Information on health, functional status, and alcohol use was self-reported at baseline and at 3-year follow-up, whereas gait speed and stride-to-stride variability were measured while walking only (single task) and under dual tasking (counting backwards).Results. Compared to light-to-moderate drinking, heavy drinking was associated with slower gait speed in single task (adj. coeff.: −.040, 95% CI: −.0.78 to −.002,p=.035). No significant association was observed between heavy drinking and gait speed variability. Nondrinkers walked significantly slower than light-to-moderate drinkers in dual task and had significantly higher gait speed variability in both single and dual task, but these associations disappeared after adjustment for comorbidity. At follow-up, 35.2% and 34.1% of the participants walked significantly slower in single and dual task, respectively. This proportion varied a little across drinking categories.Conclusion. At baseline, heavy alcohol consumption was significantly associated with slower gait speed in single task. Selective survival of the fittest heavy drinkers probably explains why this association faded in longitudinal analyses. The trend of poorer gait performance in nondrinkers disappeared after adjustment for comorbidity, suggesting confounding by a worse health status.


2019 ◽  
Vol 5 (4) ◽  
pp. 190-198
Author(s):  
Tahereh Pourkhani ◽  
◽  
Hassan Daneshmandi ◽  
Ali Asghar Norasteh ◽  
Babak Bakhshayesh Eghbali ◽  
...  

Background: Parkinson disease (PD) is characterized by motor and non-motor symptoms that affect patients’ functions, especially while performing dual-tasks a critical factor in everyday living. However, many controversies exist about the benefits of dual-task training in patients with PD. Objectives: This study assessed the efficacy of motor and cognitive dual-task training in improving balance and gait parameters in people with idiopathic PD. Materials & Methods: A single-blind controlled trial was conducted on PD patients living in Guilan Province of Iran, in 2018-2019. A total of 30 PD patients (Hoehn and Yahr stage II-III while on medication) were assigned to the cognitive dual-task training group (n=10), motor dual-task training group (n=10), and single-task control group (n=10). All groups received 30 sessions of different exercises for 10 consecutive weeks. The patients’ balance and some spatiotemporal gait parameters were respectively assessed with timed up and go test and HD VideoCam-Kinovea before and after training and then 1 month later. Results: Both dual-task and single-task trainings improved the outcome measures (timed up and go test (F=535.54; P=0.000), stride length (F=87.41; P=0.00), stride time (F=102.11; P=0.00), cadence (F=286.36; P=0.00), swing time (F=48.90; P=0.00), and stance time (F=40.56; P=0.00)). These improvements were maintained at 1-month follow-up, although the effect slightly reduced. No significant differences were found between the study groups (P>0.05). Conclusion: Motor/cognitive dual-task training and single-task training were found to be significantly and equally effective in improving balance and gait parameters in people with PD.


Sign in / Sign up

Export Citation Format

Share Document