scholarly journals Effects of dance on gait and dual-task gait in Parkinson’s disease

2019 ◽  
Author(s):  
Nadeesha Kalyani Hewa Haputhanthirige ◽  
Karen Sullivan ◽  
Gene Moyle ◽  
Sandy Brauer ◽  
Erica Rose Jeffrey ◽  
...  

Abstract Background Gait impairments in Parkinson’s disease (PD) limit independence and quality of life. While dance based interventions could improve gait, further studies are needed to determine if the benefits generalise to different terrains and when dual-tasking. The aim was to perform a feasibility study of the effects of a dance intervention, based on the Dance for PD®(DfPD®) program, on gait under different dual-tasks (verbal fluency, serial subtraction) and surfaces (even, uneven), and to determine if a larger scale follow-up RCT is warranted.Methods A dance group (DG; n = 17; age = 65.8 ± 11.7 years) and a control group (CG: n = 16; age = 67.0 ± 7.7 years) comprised of non-cognitively impaired (Addenbrooke’s score: DG = 93.2 ± 3.6, CG = 92.6 ± 4.3) independently locomoting people with PD (Hoehn & Yahr I-III) participated in the study. The DG undertook a one-hour DfPD®based class, twice weekly for 12 weeks. The CG had treatment as usual. Gait analysis was performed at baseline and post-intervention while walking on two surfaces (even, uneven) under three conditions (regular walking; dual-task: verbal-fluency, serial-subtraction). The data was analysed by means of a linear mixed model. ResultsThe DG improved significantly compared to the CG in gait velocity, cadence, step-length, and stride-length when even surface walking, with and without a dual-task. On the uneven surface the DG walked more cautiously during regular walking but had improved gait velocity, cadence and step-length when performing serial-subtractions. Conclusions DfPD®-based classes produced clinically significant improvement on spatiotemporal gait parameters under dual-task conditions and on uneven surfaces. This could arise from improved movement confidence and coordination; emotional expression; cognitive skills (planning, multitasking), and; utilisation of external movement cues. A large-scale RCT of this program is warranted.Trial registration A protocol for this study has been registered retrospectively at Australian New Zealand Clinical Trials Registry on 12.11.2018. Identifier: ACTRN12618001834246.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Bettina Wollesen ◽  
Silvan Rudnik ◽  
Alessandro Gulberti ◽  
Thomas Cordes ◽  
Christian Gerloff ◽  
...  

AbstractGait disorders in patients with Parkinson’s disease (PD) impact their mobility and self-dependence. Gait training and dual-task (DT)-training improve gait quality. This study aims to assess the feasibility of a specific, gradually intensified DT-training for PD patients with a special focus on gait performance under single task (ST) and DT conditions. Correlations to Freezing of Gait (FoG) were examined. 17 PD patients (70.1 ± 7.4 years, H&Y Stadium 2–3, FoG-Q 9.0 ± 5.5) participated in a four-week DT-training (1x/week, 60 min) with progressively increasing task difficulty and number of tasks. Gait performance (spatiotemporal parameters) was assessed during ST and DT conditions. The training improved DT gait performance, especially gait velocity + 0.11 m/s; (F(2,16) = 7.163; p = .0171; η2part = .309) and step length (+ 5.73 cm). Also, physical well-being and absolved walking distance improved significantly. Correlation analyses of the FoG score at baseline with relative change of gait metrics post-training revealed significant correlations with training-induced changes of step length and improvement of gait velocity. Overall, the developed DT-training was feasible and effective. Further studies should examine the long-term benefits and the optimal setting to achieve the highest impact. The study was registered in the DRKS (ID DRKS00018084, 23.1.20).


2021 ◽  
Vol 11 (4) ◽  
pp. 500
Author(s):  
Geetanjali Gera ◽  
Zain Guduru ◽  
Tritia Yamasaki ◽  
Julie A. Gurwell ◽  
Monica J. Chau ◽  
...  

Background: The efficacy of deep brain stimulation (DBS) and dopaminergic therapy is known to decrease over time. Hence, a new investigational approach combines implanting autologous injury-activated peripheral nerve grafts (APNG) at the time of bilateral DBS surgery to the globus pallidus interna. Objectives: In a study where APNG was unilaterally implanted into the substantia nigra, we explored the effects on clinical gait and balance assessments over two years in 14 individuals with Parkinson’s disease. Methods: Computerized gait and balance evaluations were performed without medication, and stimulation was in the off state for at least 12 h to best assess the role of APNG implantation alone. We hypothesized that APNG might improve gait and balance deficits associated with PD. Results: While people with a degenerative movement disorder typically worsen with time, none of the gait parameters significantly changed across visits in this 24 month study. The postural stability item in the UPDRS did not worsen from baseline to the 24-month follow-up. However, we measured gait and balance improvements in the two most affected individuals, who had moderate PD. In these two individuals, we observed an increase in gait velocity and step length that persisted over 6 and 24 months. Conclusions: Participants did not show worsening of gait and balance performance in the off therapy state two years after surgery, while the two most severely affected participants showed improved performance. Further studies may better address the long-term maintanenace of these results.


2020 ◽  
Vol 2020 ◽  
pp. 1-12 ◽  
Author(s):  
Hanna Johansson ◽  
Malin Freidle ◽  
Urban Ekman ◽  
Ellika Schalling ◽  
Breiffni Leavy ◽  
...  

Background. Recent studies indicate that exercise can induce neuroplastic changes in people with Parkinson’s disease (PwPD). Reports of feasibility outcomes from existing pilot trials however are, of date, insufficient to enable replication by others in larger definitive trials. Objective. To evaluate trial design for a definitive trial by exploring process and scientific feasibility. Methods. The trial design was a parallel-group RCT pilot with a 1 : 1 allocation ratio to either HiBalance or an active control group (HiCommunication). Both groups received one-hour sessions twice weekly, plus home exercises weekly, for 10 weeks. Participants with mild-to-moderate Parkinson’s disease (PD) were recruited via advertisement. Assessment included physical performance, structural and functional MRI, blood sampling, neuropsychological assessment, and speech/voice assessment. Process and scientific feasibility were monitored throughout the study. Process feasibility involved recruitment, participant acceptability of assessments and interventions, assessment procedures (focus on imaging, blood sampling, and dual-task gait analysis), and blinding procedures. Scientific feasibility involved trends in outcome response and safety during group training and home exercises. Data are presented in median, minimum, and maximum values. Changes from pre- to postintervention are reported descriptively. Results. Thirteen participants were included (4 women, mean age 69.7 years), with a recruitment rate of 31%. Attendance rates and follow-up questionnaires indicated that both groups were acceptable to participate. Image quality was acceptable; however, diplopia and/or sleepiness were observed in several participants during MRI. With regard to dual-task gait performance, there appeared to be a ceiling effect of the cognitive tasks with seven participants scoring all correct answers at pretest. Blinding of group allocation was successful for one assessor but was broken for half of participants for the other. Conclusions. The overall trial design proved feasible to perform, but further strengthening ahead of the definitive RCT is recommended, specifically with respect to MRI setup, cognitive dual-tasks during gait, and blinding procedures. This trial is registered with NCT03213873.


2015 ◽  
Vol 21 (4) ◽  
pp. 413-416 ◽  
Author(s):  
Manon Herfurth ◽  
Jana Godau ◽  
Barbara Kattner ◽  
Silvia Rombach ◽  
Stefan Grau ◽  
...  

2022 ◽  
Vol 8 (1) ◽  
Author(s):  
R. Bhome ◽  
A. Zarkali ◽  
G. E. C. Thomas ◽  
J. E. Iglesias ◽  
J. H. Cole ◽  
...  

AbstractDepression is a common non-motor feature of Parkinson’s disease (PD) which confers significant morbidity and is challenging to treat. The thalamus is a key component in the basal ganglia-thalamocortical network critical to the pathogenesis of PD and depression but the precise thalamic subnuclei involved in PD depression have not been identified. We performed structural and diffusion-weighted imaging (DWI) on 76 participants with PD to evaluate the relationship between PD depression and grey and white matter thalamic subnuclear changes. We used a thalamic segmentation method to divide the thalamus into its 50 constituent subnuclei (25 each hemisphere). Fixel-based analysis was used to calculate mean fibre cross-section (FC) for white matter tracts connected to each subnucleus. We assessed volume and FC at baseline and 14–20 months follow-up. A generalised linear mixed model was used to evaluate the relationship between depression, subnuclei volume and mean FC for each thalamic subnucleus. We found that depression scores in PD were associated with lower right pulvinar anterior (PuA) subnucleus volume. Antidepressant use was associated with higher right PuA volume suggesting a possible protective effect of treatment. After follow-up, depression scores were associated with reduced white matter tract macrostructure across almost all tracts connected to thalamic subnuclei. In conclusion, our work implicates the right PuA as a relevant neural structure in PD depression and future work should evaluate its potential as a therapeutic target for PD depression.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Amir Pourmoghaddam ◽  
Marius Dettmer ◽  
Daniel P. O’Connor ◽  
William H. Paloski ◽  
Charles S. Layne

Analysis of electromyographic (EMG) data is a cornerstone of research related to motor control in Parkinson’s disease. Nonlinear EMG analysis tools have shown to be valuable, but analysis is often complex and interpretation of the data may be difficult. A previously introduced algorithm (SYNERGOS) that provides a single index value based on simultaneous multiple muscle activations (MMA) has been shown to be effective in detecting changes in EMG activation due to modifications of walking speeds in healthy adults. In this study, we investigated if SYNERGOS detects MMA changes associated with both different walking speeds and levodopa intake. Nine male Parkinsonian patients walked on a treadmill with increasing speed while on or off medication. We collected EMG data and computed SYNERGOS indices and employed a restricted maximum likelihood linear mixed model to the values. SYNERGOS was sensitive to neuromuscular modifications due to both alterations of gait speed and intake of levodopa. We believe that the current experiment provides evidence for the potential value of SYNERGOS as a nonlinear tool in clinical settings, by providing a single value index of MMA. This could help clinicians to evaluate the efficacy of interventions and treatments in Parkinson’s disease in a simple manner.


Trials ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Lucas Rodrigues Nascimento ◽  
Ester Miyuki Nakamura-Palacios ◽  
Augusto Boening ◽  
Daniel Lyrio Cabral ◽  
Alessandra Swarowsky ◽  
...  

Abstract Background Transcranial direct current stimulation (tDCS) has the potential to modulate cortical excitability and enhance the effects of walking training in people with Parkinson’s disease. This study will examine the efficacy of the addition of tDCS to a task-specific walking training to improve walking and mobility and to reduce falls in people with Parkinson’s disease. Methods This is a two-arm, prospectively registered, randomized trial with concealed allocation, blinded assessors, participants and therapists, and intention-to-treat analysis. Twenty-four individuals with Parkinson’s disease, categorized as slow or intermediate walkers (walking speeds ≤ 1.0 m/s), will be recruited. The experimental group will undertake a 30-min walking training associated with tDCS, for 4 weeks. The control group will undertake the same walking training, but with sham-tDCS. The primary outcome will be comfortable walking speed. Secondary outcomes will include walking step length, walking cadence, walking confidence, mobility, freezing of gait, fear of falling, and falls. Outcomes will be collected by a researcher blinded to group allocation at baseline (week 0), after intervention (week 4), and 1 month beyond intervention (week 8). Discussion tDCS associated with walking training may help improve walking of slow and intermediate walkers with Parkinson’s disease. If walking is enhanced, the benefits may be accompanied by better mobility and reduced fear of falling, and individuals may experience greater free-living physical activity at home and in the community. Trial registration Brazilian Registry of Clinical Trials (ReBEC) RBR-6bvnx6. Registered on September 23, 2019


2021 ◽  
Vol 11 (10) ◽  
pp. 4518
Author(s):  
Fuengfa Khobkhun ◽  
Jinjuta Suwannarat ◽  
Anuchai Pheungphrarattanatrai ◽  
Kanjana Niemrungruang ◽  
Sakaowrat Techataweesub ◽  
...  

Current restrictions on clinical visits as a consequence of the COVID-19 pandemic has increased the need for home-based exercise regimes to facilitate useful, long term patterns of behaviour in individuals with Parkinson’s disease (PD). This study aimed to evaluate the effectiveness of a 10-week home-based exercise program designed to target improvements in axial rigidity and gait. The Movement Disorders Society-Unified Parkinson’s Disease Rating Scale (MDS-UPDRS), motor scale and rigidity items, Functional axial rotation–physical (FAR-p), functional reach test (FRT), and time up and go (TUG) test were recorded. In addition, the 10-metre walk test, the fall efficacy scale international (FES-I) and the global rating of change score (GROC) were also recorded. Eighteen individuals were divided randomly into two groups: a home-based exercise group (n = 10) and a traditional physiotherapy control group (n = 8). Participants in the 10-week home-based exercise group showed significant improvements (p < 0.05) in the MDS-UPDRS rigidity item, FAR-p, step length, gait velocity, FRT and FES-I when compared with the control group. This study supports the use of home-based exercises in individuals with PD. These preliminary results also support the hypothesis that targeting axial deficits may be an effective approach for improving gait and reducing falls.


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Quincy J. Almeida ◽  
Haseel Bhatt

Visual cues are known to improve gait in Parkinson's disease (PD); however, the contribution of optic flow continues to be disputed. This study manipulated transverse line cues during two gait training interventions (6 weeks). PD subjects (N=42) were assigned to one of three groups: treadmill (TG), overground (OG), or control group (CG). Participants walked across lines placed on either treadmills or 16-meter carpets, respectively. The treadmill (TG) offered a reduced dynamic flow from the environment, while lines presented on the ground (OG) emphasized optic flow related to the participant's own displacement. Both interventions significantly improved (and maintained through retention period) step length, thus improving walking velocity. Only the OG improved in the TUG test, while only the TG showed hints of improving (and maintaining) motor symptoms. Since gait improvements were found in both training groups, we conclude that by reducing optic flow, gait benefits associated with visual cueing training can still be achieved.


2014 ◽  
Vol 116 (5) ◽  
pp. 495-503 ◽  
Author(s):  
Franca Barbic ◽  
Manuela Galli ◽  
Laura Dalla Vecchia ◽  
Margherita Canesi ◽  
Veronica Cimolin ◽  
...  

Motor impairment in Parkinson's disease (PD) is partly due to defective central processing of lower limb afferents. Concomitant alterations in cardiovascular autonomic control leading to orthostatic hypotension may worsen motor ability. We evaluated whether mechanical activation of feet sensory afferents could improve gait and modify the response of cardiovascular autonomic control to stressors in 16 patients (age 66 ± 2 yr) with idiopathic PD (Hoehn & Yhar scale 2–3) on their usual therapy. Eight subjects ( group A) were randomized to undergo skin pressure (0.58 ± 0.04 kg/mm2) stimulation at the hallux tip and first metatarsal joint (effective stimulation; ES) of both feet. Eight remaining patients ( group B) underwent sham stimulation (SS) followed by ES. Three-dimensional movement analysis provided quantitative indexes of movement disability before (baseline) and 24 h after ES and SS. Spectral analysis of heart rate and blood pressure variability provided markers of cardiac sympatho-vagal (LF/HF) and vascular sympathetic (LFSAP) modulations. Markers were measured at rest and during 75° head-up tilt, before and 24 h after ES and SS. After ES, step length and gait velocity increased, upright rotation velocity was enhanced, and step number was decreased. After ES, LFSAP declined. The increase in LF/HF and LFSAP induced by tilt was greater than before feet stimulation. No changes in gait and autonomic parameters were observed after SS. Twenty-four hours after ES, patients with PD showed improved gait and increased cardiac and vascular sympathetic modulation during upright position compared with baseline. Conversely, SS was ineffective on both movement and autonomic parameters, indicating a site specificity effect of the stimulation.


Sign in / Sign up

Export Citation Format

Share Document