Effects of Gender and Foot-Landing Techniques on Lower Extremity Kinematics during Drop-Jump Landings

2007 ◽  
Vol 23 (4) ◽  
pp. 289-299 ◽  
Author(s):  
Nelson Cortes ◽  
James Onate ◽  
João Abrantes ◽  
Linda Gagen ◽  
Elizabeth Dowling ◽  
...  

The purpose of this study was to assess kinematic lower extremity motion patterns (hip flexion, knee flexion, knee valgus, and ankle dorsiflexion) during various foot-landing techniques (self-preferred, forefoot, and rear foot) between genders. 3-D kinematics were collected on 50 (25 male and 25 female) college-age recreational athletes selected from a sample of convenience. Separate repeated-measures ANOVAs were used to analyze each variable at three time instants (initial contact, peak vertical ground reaction force, and maximum knee flexion angle). There were no significant differences found between genders at the three instants for each variable. At initial contact, the forefoot technique (35.79° ± 11.78°) resulted in significantly (p= .001) less hip flexion than did the self-preferred (41.25° ± 12.89°) and rear foot (43.15° ± 11.77°) techniques. At peak vertical ground reaction force, the rear foot technique (26.77° ± 9.49°) presented significantly lower (p= .001) knee flexion angles as compared with forefoot (58.77° ± 20.00°) and self-preferred (54.21° ± 23.78°) techniques. A significant difference for knee valgus angles (p= .001) was also found between landing techniques at peak vertical ground reaction force. The self-preferred (4.12° ± 7.51°) and forefoot (4.97° ± 7.90°) techniques presented greater knee varus angles as compared with the rear foot technique (0.08° ± 6.52°). The rear foot technique created more ankle dorsiflexion and less knee flexion than did the other techniques. The lack of gender differences can mean that lower extremity injuries (e.g., ACL tears) may not be related solely to gender but may instead be associated with the landing technique used and, consequently, the way each individual absorbs jump-landing energy.

2012 ◽  
Vol 47 (1) ◽  
pp. 32-41 ◽  
Author(s):  
David Quammen ◽  
Nelson Cortes ◽  
Bonnie L. Van Lunen ◽  
Shawn Lucci ◽  
Stacie I. Ringleb ◽  
...  

Context: Altered neuromuscular control strategies during fatigue probably contribute to the increased incidence of non-contact anterior cruciate ligament injuries in female athletes. Objective: To determine biomechanical differences between 2 fatigue protocols (slow linear oxidative fatigue protocol [SLO-FP] and functional agility short-term fatigue protocol [FAST-FP]) when performing a running-stop-jump task. Design: Controlled laboratory study. Setting: Laboratory. Patients or Other Participants: A convenience sample of 15 female soccer players (age = 19.2 ±0.8 years, height = 1.67±0.05m, mass = 61.7 + 8.1 kg) without injury participated. Intervention(s): Five successful trials of a running–stop-jump task were obtained prefatigue and postfatigue during the 2 protocols. For the SLO-FP, a peak oxygen consumption (V˙o2peak) test was conducted before the fatigue protocol. Five minutes after the conclusion of the V˙o2peak test, participants started the fatigue protocol by performing a 30-minute interval run. The FAST-FP consisted of 4 sets of a functional circuit. Repeated 2 (fatigue protocol) × 2 (time) analyses of variance were conducted to assess differences between the 2 protocols and time (prefatigue, postfatigue). Main Outcome Measure(s): Kinematic and kinetic measures of the hip and knee were obtained at different times while participants performed both protocols during prefatigue and postfatigue. Results: Internal adduction moment at initial contact (IC) was greater during FAST-FP (0.064 ±0.09 Nm/kgm) than SLO-FP (0.024±0.06 Nm/kgm) (F1,14 = 5.610, P=.03). At IC, participants had less hip flexion postfatigue (44.7°±8.1°) than prefatigue (50.1°±9.5°) (F1,14 = 16.229, P=.001). At peak vertical ground reaction force, participants had less hip flexion postfatigue (44.7°±8.4°) than prefatigue (50.4°±10.3°) (F1,14 = 17.026, P=.001). At peak vertical ground reaction force, participants had less knee flexion postfatigue (−35.9°±6.5°) than prefatigue (−38.8°±5.03°) (F1,14 = 11.537, P=.001). Conclusions: Our results demonstrated a more erect landing posture due to a decrease in hip and knee flexion angles in the postfatigue condition. The changes were similar between protocols; however, the FAST-FP was a clinically applicable 5-minute protocol, whereas the SLO-FP lasted approximately 45 minutes.


2020 ◽  
pp. 1-9
Author(s):  
Louis Howe ◽  
Jamie S. North ◽  
Mark Waldron ◽  
Theodoros M. Bampouras

Context: Ankle dorsiflexion range of motion (DF ROM) has been associated with a number of kinematic and kinetic variables associated with landing performance that increase injury risk. However, whether exercise-induced fatigue exacerbates compensatory strategies has not yet been established. Objectives: (1) Explore differences in landing performance between individuals with restricted and normal ankle DF ROM and (2) identify the effect of fatigue on compensations in landing strategies for individuals with restricted and normal ankle DF ROM. Design: Cross-sectional. Setting: University research laboratory. Patients or Other Participants: Twelve recreational athletes with restricted ankle DF ROM (restricted group) and 12 recreational athletes with normal ankle DF ROM (normal group). Main Outcome Measure(s): The participants performed 5 bilateral drop-landings, before and following a fatiguing protocol. Normalized peak vertical ground reaction force, time to peak vertical ground reaction force, and loading rate were calculated, alongside sagittal plane initial contact angles, peak angles, and joint displacement for the ankle, knee, and hip. Frontal plane projection angles were also calculated. Results: At the baseline, the restricted group landed with significantly less knee flexion (P = .005, effect size [ES] = 1.27) at initial contact and reduced peak ankle dorsiflexion (P < .001, ES = 1.67), knee flexion (P < .001, ES = 2.18), and hip-flexion (P = .033, ES = 0.93) angles. Sagittal plane joint displacement was also significantly less for the restricted group for the ankle (P < .001, ES = 1.78), knee (P < .001, ES = 1.78), and hip (P = .028, ES = 0.96) joints. Conclusions: These findings suggest that individuals with restricted ankle DF ROM should adopt different landing strategies than those with normal ankle DF ROM. This is exacerbated when fatigued, although the functional consequences of fatigue on landing mechanics in individuals with ankle DF ROM restriction are unclear.


2020 ◽  
Vol 73 (1) ◽  
pp. 19-31
Author(s):  
Min-Hao Hung ◽  
Chi-Yao Chang ◽  
Kuo-Chuan Lin ◽  
Chia-Ling Hung ◽  
Chin-Shan Ho

AbstractPrevious research in badminton has associated unilateral landings following overhead strokes with the occurrence of knee injuries. Smashing involves tensing the abdomen muscles while swinging the racket rapidly and maintaining one’s balance while performing coordinated movements and steps; this process puts stress on the player’s lower limbs. However, few studies have compared the effects of different stroke training while performing various types of badminton strokes. This study investigated the influence of different stroke training on the smash action of badminton players. Three stroke training conditions were considered: shadow, target striking, and smashing. Sixteen male experienced badminton players were recruited for this study. One-way repeated-measures ANOVA with Bonferroni correction was used to identify the differences. At the initial contact with the ground, the knee flexion and knee valgus angles under the smash condition were significantly higher than target and shadow conditions. Under the smash condition, hip abduction was significantly higher than under the target and shadow conditions. Moreover, the hip abduction under the target condition was significantly higher than under the shadow condition. At the maximum knee flexion, the hip abduction under the smash and target conditions was significantly higher than under the shadow condition. Regarding the time from the moment of initial contact to the peak of vertical ground reaction force it was shorter under the smash condition than the target and shadow conditions. The vertical ground reaction force was higher under the smash condition than under the target and shadow conditions. The 50 ms impulse was higher under the smash condition than under the target and shadow conditions. The main findings of this study are that under the smash condition, the motion in the frontal plane increased, which produced higher loads on the joints in the lower limbs. Player performed the same footwork under the three conditions, but the landing strategies differed because of unique swing motions and techniques. The condition under which a player hits a shot to a target area can affect the landing. The results of this study suggest that target practice is more effective for improving the landing technique employed during actual shots than shadow practice.


1997 ◽  
Vol 25 (4) ◽  
pp. 236-244 ◽  
Author(s):  
Thomas M. Cook ◽  
Kevin P. Farrell ◽  
Iva A. Carey ◽  
Joan M. Gibbs ◽  
Gregory E. Wiger

Author(s):  
Chi-Yin Tse ◽  
Hamid Nayeb-Hashemi ◽  
Ashkan Vaziri ◽  
Paul K. Canavan

A single-leg landing is a common type of high-risk maneuver performed by athletes. The majority of anterior cruciate ligament injury is accounted for by non-contact mechanisms, such as single-leg landings. The purpose of this study was to develop a subject specific single-leg drop landing to analyze the kinematics and kinetics of two different types of landings. Kinematic data was analyzed at five points during the landing phase: initial contact (IC), peak vertical ground reaction force (pVGRF), peak joint reaction force (pJRF), maximum knee flexion (MKF), and maximum valgus angle (MFP). A linear relationship was noted in comparing the average maximum peak vertical ground reaction force, average maximum knee flexion, and average maximum valgus angle to the platform heights in both landing styles. An increase in platform height was directly related to increased knee valgus angle in both landing styles. Significant difference (p < 0.05) was noted in the peak vertical ground reaction force between the 60% and 80% platform heights, as well as between 60% and 100% with arms above. Landing with arms across the body yielded more significant difference (p < 0.05) between platform heights in both frontal and sagittal planes. However, comparing both landing styles to each other only yielded significant difference (p < 0.05) at the 100% platform height. A valgus-varus-valgus movement was observed in all landings, and is a probable contributor to single-leg landing ACL ruptures.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Zehao Tong ◽  
Feng Zhai ◽  
Hang Xu ◽  
Wenjia Chen ◽  
Jiesheng Cui

Introduction. This study finds the lower limbs’ reactive strength index and biomechanical parameters on variable heights. Objective. This research aims to reveal the effects of drop height on lower limbs’ reactive strength index and biomechanical parameters. Methods. Two AMTI force platforms and Vicon motion capture system were used to collect kinematic and dynamic signals of the lower limbs. Results. The drop height had significant effects on peak vertical ground reaction force and peak vertical ground reaction force in the extension phase, lower limbs’ support moment, eccentric power of the hip joint, eccentric power of the knee joint, eccentric power of the ankle joint, and concentric power of the hip joint. The drop height had no significant effects on the reactive strength index. Reactive strength index (RSI) had no significant correlations with the personal best of high jumpers. The optimal loading height for the maximum reactive strength index was 0.45 m. Conclusion. The optimal loading height for the reactive strength index can be used for explosive power training and lower extremity injury prevention.


2021 ◽  
pp. 1-8
Author(s):  
Jihong Park ◽  
Kyeongtak Song ◽  
Sae Yong Lee

Context: It is unclear if lower-extremity joint cooling alters biomechanics during a functional movement. Objective: To investigate the effects of unilateral lower-extremity cryotherapy on movement alterations during a single-leg drop jump. Design: A crossover design. Setting: Laboratory. Patients: Twenty healthy subjects (10 males and 10 females; 23 y, 169 cm, 66 kg). Intervention(s): Subjects completed a single-leg drop jump before and after a 20-minute ankle or knee joint cooling on the right leg, or control (seated without cooling) on 3 separate days. Main Outcome Measures: Time to peak knee flexion, vertical ground reaction force, lower-extremity joint angular velocity (sagittal plane only), and angle and moment (sagittal and frontal planes) in the involved leg over the entire ground contact (GC; from initial contact to jump-off) during the first landing. Time to peak knee flexion was compared using an analysis of variance; the rest of the outcome measures were analyzed using functional analyses of variance (P < .05). Results: Neither joint cooling condition changed the time to peak knee flexion (F2,95 = 0.73, P = .49). Ankle joint cooling reduced vertical ground reaction force (55 N at 4% of GC), knee joint angular velocity (44°/s during 5%–9% of GC), and knee varus moment (181 N·m during 18%–20% of GC). Knee joint cooling resulted in a reduction in knee joint angular velocity (24°/s during 37%–40% of GC) and hip adduction moment (151 N·m during 46%–48% of GC), and an increase in hip joint angular velocity (16°/s during 49%–53% of GC) and plantarflexion angle (1.5° during 11%–29% of GC). Conclusion: Resuming activity immediately after lower-extremity joint cooling does not seem to predispose an individual to injury during landing because altered mechanics are neither overlapping with the injury time period nor of sufficient magnitude to lead to an injury.


2013 ◽  
Vol 48 (2) ◽  
pp. 161-171 ◽  
Author(s):  
Jena Etnoyer ◽  
Nelson Cortes ◽  
Stacie I. Ringleb ◽  
Bonnie L. Van Lunen ◽  
James A. Onate

Context: Instruction can be used to alter the biomechanical movement patterns associated with anterior cruciate ligament (ACL) injuries. Objective: To determine the effects of instruction through combination (self and expert) feedback or self-feedback on lower extremity kinematics during the box–drop-jump task, running–stop-jump task, and sidestep-cutting maneuver over time in college-aged female athletes. Design: Randomized controlled clinical trial. Setting: Laboratory. Patients or Other Participants: Forty-three physically active women (age = 21.47 ± 1.55 years, height = 1.65 ± 0.08 m, mass = 63.78 ± 12.00 kg) with no history of ACL or lower extremity injuries or surgery in the 2 months before the study were assigned randomly to 3 groups: self-feedback (SE), combination feedback (CB), or control (CT). Intervention(s): Participants performed a box–drop-jump task for the pretest and then received feedback about their landing mechanics. After the intervention, they performed an immediate posttest of the box–drop-jump task and a running–stop-jump transfer test. Participants returned 1 month later for a retention test of each task and a sidestep-cutting maneuver. Kinematic data were collected with an 8-camera system sampled at 500 Hz. Main Outcome Measure(s): The independent variables were feedback group (3), test time (3), and task (3). The dependent variables were knee- and hip-flexion, knee-valgus, and hip- abduction kinematics at initial contact and at peak knee flexion. Results: For the box–drop-jump task, knee- and hip-flexion angles at initial contact were greater at the posttest than at the retention test (P &lt; .001). At peak knee flexion, hip flexion was greater at the posttest than at the pretest (P = .003) and was greater at the retention test than at the pretest (P = .04); knee valgus was greater at the retention test than at the pretest (P = .03) and posttest (P = .02). Peak knee flexion was greater for the CB than the SE group (P = .03) during the box–drop-jump task at posttest. For the running–stop-jump task at the posttest, the CB group had greater peak knee flexion than the SE and CT (P ≤ .05). Conclusions: Our results suggest that feedback involving a combination of self-feedback and expert video feedback with oral instruction effectively improved lower extremity kinematics during jump-landing tasks.


Sign in / Sign up

Export Citation Format

Share Document