Assessment of Reactive Motor Performance with Event-Related Brain Potentials: Attention Processes in Elite Table Tennis Players

2004 ◽  
Vol 26 (2) ◽  
pp. 317-337 ◽  
Author(s):  
Tsung-Min Hung ◽  
Thomas W. Spalding ◽  
D. Laine Santa Maria ◽  
Bradley D. Hatfield

Motor readiness, visual attention, and reaction time (RT) were assessed in 15 elite table tennis players (TTP) and 15 controls (C) during Posner’s cued attention task. Lateralized readiness potentials (LRP) were derived from contingent negative variation (CNV) at Sites C3 and C4, elicited between presentation of directional cueing (S1) and the appearance of the imperative stimulus (S2), to assess preparation for hand movement while P1 and N1 component amplitudes were derived from occipital event-related potentials (ERPs) in response to S2 to assess visual attention. Both groups had faster RT to validly cued stimuli and slower RT to invalidly cued stimuli relative to the RT to neutral stimuli that were not preceded by directional cueing, but the groups did not differ in attention benefit or cost. However, TTP did have faster RT to all imperative stimuli; they maintained superior reactivity to S2 whether preceded by valid, invalid, or neutral warning cues. Although both groups generated LRP in response to the directional cues, TTP generated larger LRP to prepare the corresponding hand for movement to the side of the cued location. TTP also had an inverse cueing effect for N1 amplitude (i.e., amplitude of N1 to the invalid cue > amplitude of N1 to the valid cue) while C visually attended to the expected and unexpected locations equally. It appears that TTP preserve superior reactivity to stimuli of uncertain location by employing a compensatory strategy to prepare their motor response to an event associated with high probability, while simultaneously devoting more visual attention to an upcoming event of lower probability.

2015 ◽  
Vol 27 (5) ◽  
pp. 1017-1028 ◽  
Author(s):  
Paul Metzner ◽  
Titus von der Malsburg ◽  
Shravan Vasishth ◽  
Frank Rösler

Recent research has shown that brain potentials time-locked to fixations in natural reading can be similar to brain potentials recorded during rapid serial visual presentation (RSVP). We attempted two replications of Hagoort, Hald, Bastiaansen, and Petersson [Hagoort, P., Hald, L., Bastiaansen, M., & Petersson, K. M. Integration of word meaning and world knowledge in language comprehension. Science, 304, 438–441, 2004] to determine whether this correspondence also holds for oscillatory brain responses. Hagoort et al. reported an N400 effect and synchronization in the theta and gamma range following world knowledge violations. Our first experiment (n = 32) used RSVP and replicated both the N400 effect in the ERPs and the power increase in the theta range in the time–frequency domain. In the second experiment (n = 49), participants read the same materials freely while their eye movements and their EEG were monitored. First fixation durations, gaze durations, and regression rates were increased, and the ERP showed an N400 effect. An analysis of time–frequency representations showed synchronization in the delta range (1–3 Hz) and desynchronization in the upper alpha range (11–13 Hz) but no theta or gamma effects. The results suggest that oscillatory EEG changes elicited by world knowledge violations are different in natural reading and RSVP. This may reflect differences in how representations are constructed and retrieved from memory in the two presentation modes.


2015 ◽  
Vol 114 (5) ◽  
pp. 2672-2681 ◽  
Author(s):  
Emanuel N. van den Broeke ◽  
André Mouraux ◽  
Antonia H. Groneberg ◽  
Doreen B. Pfau ◽  
Rolf-Detlef Treede ◽  
...  

Secondary hyperalgesia is believed to be a key feature of “central sensitization” and is characterized by enhanced pain to mechanical nociceptive stimuli. The aim of the present study was to characterize, using EEG, the effects of pinprick stimulation intensity on the magnitude of pinprick-elicited brain potentials [event-related potentials (ERPs)] before and after secondary hyperalgesia induced by intradermal capsaicin in humans. Pinprick-elicited ERPs and pinprick-evoked pain ratings were recorded in 19 healthy volunteers, with mechanical pinprick stimuli of varying intensities (0.25-mm probe applied with a force extending between 16 and 512 mN). The recordings were performed before (T0) and 30 min after (T1) intradermal capsaicin injection. The contralateral noninjected arm served as control. ERPs elicited by stimulation of untreated skin were characterized by 1) an early-latency negative-positive complex peaking between 120 and 250 ms after stimulus onset (N120-P240) and maximal at the vertex and 2) a long-lasting positive wave peaking 400–600 ms after stimulus onset and maximal more posterior (P500), which was correlated to perceived pinprick pain. After capsaicin injection, pinprick stimuli were perceived as more intense in the area of secondary hyperalgesia and this effect was stronger for lower compared with higher stimulus intensities. In addition, there was an enhancement of the P500 elicited by stimuli of intermediate intensity, which was significant for 64 mN. The other components of the ERPs were unaffected by capsaicin. Our results suggest that the increase in P500 magnitude after capsaicin is mediated by facilitated mechanical nociceptive pathways.


1991 ◽  
Vol 3 (2) ◽  
pp. 151-165 ◽  
Author(s):  
Helen Neville ◽  
Janet L. Nicol ◽  
Andrew Barss ◽  
Kenneth I. Forster ◽  
Merrill F. Garrett

Theoretical considerations and diverse empirical data from clinical, psycholinguistic, and developmental studies suggest that language comprehension processes are decomposable into separate subsystems, including distinct systems for semantic and grammatical processing. Here we report that event-related potentials (ERPs) to syntactically well-formed but semantically anomalous sentences produced a pattern of brain activity that is distinct in timing and distribution from the patterns elicited by syntactically deviant sentences, and further, that different types of syntactic deviance produced distinct ERP patterns. Forty right-handed young adults read sentences presented at 2 words/sec while ERPs were recorded from over several positions between and within the hemispheres. Half of the sentences were semantically and grammatically acceptable and were controls for the remainder, which contained sentence medial words that violated (1) semantic expectations, (2) phrase structure rules, or (3) WH-movement constraints on Specificity and (4) Subjacency. As in prior research, the semantic anomalies produced a negative potential, N400, that was bilaterally distributed and was largest over posterior regions. The phrase structure violations enhanced the N125 response over anterior regions of the left hemisphere, and elicited a negative response (300-500 msec) over temporal and parietal regions of the left hemisphere. Violations of Specificity constraints produced a slow negative potential, evident by 125 msec, that was also largest over anterior regions of the left hemisphere. Violations of Subjacency constraints elicited a broadly and symmetrically distributed positivity that onset around 200 msec. The distinct timing and distribution of these effects provide biological support for theories that distinguish between these types of grammatical rules and constraints and more generally for the proposal that semantic and grammatical processes are distinct subsystems within the language faculty.


2019 ◽  
Author(s):  
Rémy Masson ◽  
Yohana Lévêque ◽  
Geneviève Demarquay ◽  
Hesham ElShafei ◽  
Lesly Fornoni ◽  
...  

AbstractObjectivesTo evaluate alterations of top-down and/or bottom-up attention in migraine and their cortical underpinnings.Methods19 migraineurs between attacks and 19 matched control participants performed a task evaluating jointly top-down and bottom-up attention, using visually-cued target sounds and unexpected task-irrelevant distracting sounds. Behavioral responses and MEG/EEG were recorded. Event-related potentials and fields (ERPs/ERFs) were processed and source reconstruction was applied to ERFs.ResultsAt the behavioral level, neither top-down nor bottom-up attentional processes appeared to be altered in migraine. However, migraineurs presented heightened evoked responses following distracting sounds (orienting component of the N1 and Re-Orienting Negativity, RON) and following target sounds (orienting component of the N1), concomitant to an increased recruitment of the right temporo-parietal junction. They also displayed an increased effect of the cue informational value on target processing resulting in the elicitation of a negative difference (Nd).ConclusionsMigraineurs appear to display increased bottom-up orienting response to all incoming sounds, and an enhanced recruitment of top-down attention.SignificanceThe interictal state in migraine is characterized by an exacerbation of the orienting response to attended and unattended sounds. These attentional alterations might participate to the peculiar vulnerability of the migraine brain to all incoming stimuli.HighlightsMigraineurs performed as well as healthy participants in an attention task.However, EEG markers of both bottom-up and top-down attention are increased.Migraine is also associated with a facilitated recruitment of the right temporo-parietal junction.


2018 ◽  
Vol 49 (4) ◽  
pp. 215-225 ◽  
Author(s):  
Jennifer R. Lepock ◽  
Romina Mizrahi ◽  
Michele Korostil ◽  
R. Michael Bagby ◽  
Elizabeth W. Pang ◽  
...  

There is emerging evidence that identification and treatment of individuals in the prodromal or clinical high-risk (CHR) state for psychosis can reduce the probability that they will develop a psychotic disorder. Event-related brain potentials (ERPs) are a noninvasive neurophysiological technique that holds promise for improving our understanding of neurocognitive processes underlying the CHR state. We aimed to systematically review the current literature on cognitive ERP studies of the CHR population, in order to summarize and synthesize the results, and their implications for our understanding of the CHR state. Across studies, amplitudes of the auditory P300 and duration mismatch negativity (MMN) ERPs appear reliably reduced in CHR individuals, suggesting that underlying impairments in detecting changes in auditory stimuli are a sensitive early marker of the psychotic disease process. There are more limited data indicating that an earlier-latency auditory ERP response, the N100, is also reduced in amplitude, and in the degree to which it is modulated by stimulus characteristics, in the CHR population. There is also evidence that a number of auditory ERP measures (including P300, MMN and N100 amplitudes, and N100 gating in response to repeated stimuli) can further refine our ability to detect which CHR individuals are most at risk for developing psychosis. Thus, further research is warranted to optimize the predictive power of algorithms incorporating these measures, which could help efforts to target psychosis prevention interventions toward those most in need.


Author(s):  
Adil Deniz Duru ◽  
Ali Bayram ◽  
Tamer Demiralp ◽  
Ahmet Ademoglu

Event-related potentials (ERP) are transient brain responses to cognitive stimuli, and they consist of several stationary events whose temporal frequency content can be characterized in terms of oscillations or rhythms. Precise localization of electrical events in the brain, based on the ERP data recorded from the scalp, has been one of the main challenges of functional brain imaging. Several currentDensity estimation techniques for identifying the electrical sources generating the brain potentials are developed for the so-called neuroelectromagnetic inverse problem in the last three decades (Baillet, Mosher, & Leahy, 2001; Koles, 1998; Michela, Murraya, Lantza, Gonzaleza, Spinellib, & Grave de Peraltaa, 2004; Scherg & von Cramon, 1986).


Author(s):  
Robert West

Life is filled with goals or intentions that people hope to realize. Some of these are rather mundane (e.g., remembering to purchase a key ingredient for a recipe when stopping at the market), while others are more significant (e.g., remembering to pick up one’s child from school at the end of the day). Prospective memory represents the ability to form and then realize intentions at an appropriate time. A fundamental aspect of prospective memory is that one is engaged in one or more tasks (i.e., ongoing activities) between the formation of an intention and the opportunity to realize the goal. For instance, in the shopping example, one might form the intention at home and then travel to the market and collect several other items before walking past the desired ingredient. Considerable research has demonstrated that the efficiency of prospective memory declines with age, although age-related differences are not universal. The neurocognitive processes underpinning age-related differences in the formation and realization of delayed intentions have been investigated in studies using event-related brain potentials. This research reveals that age-related differences in prospective memory arise from the disruption of neural systems supporting the successful encoding of intentions, the detection of prospective memory cues, and possibly processes supporting the retrieval of intentions from memory when a cue is encountered or efficiently shifting from the ongoing activity to the prospective element of the task. Therefore, strategies designed to ameliorate age-related declines in prospective memory should target a variety of processes engaged during the encoding, retrieval, and enactment of delayed intentions.


1994 ◽  
Vol 6 (3) ◽  
pp. 204-219 ◽  
Author(s):  
Peter Praamstra ◽  
Antje S. Meyer ◽  
Willem J. M. Levelt

Two experiments examined phonological priming effects on reaction times, error rates, and event-related brain potential (ERP) measures in an auditory lexical decision task. In Experiment 1 related prime-target pairs rhymed, and in Experiment 2 they alliterated (i.e., shared the consonantal onset and vowel). Event-related potentials were recorded in a delayed response task. Reaction times and error rates were obtained both for the delayed and an immediate response task. The behavioral data of Experiment 1 provided evidence for phonological facilitation of word, but not of nonword decisions. The brain potentials were more negative to unrelated than to rhyming word-word pairs between 450 and 700 rnsec after target onset. This negative enhancement was not present for word-nonword pairs. Thus, the ERP results match the behavioral data. The behavioral data of Experiment 2 provided no evidence for phonological Facilitation. However, between 250 and 450 msec after target onset, i.e., considerably earlier than in Experiment 1, brain potentials were more negative for unrelated than for alliterating Word-word and word-nonword pairs. It is argued that the ERP effects in the two experiments could be modulations of the same underlying component, possibly the N400. The difference in the timing of the effects is likely to be due to the fact that the shared segments in related stimulus pairs appeared in different word positions in the two experiments.


Sign in / Sign up

Export Citation Format

Share Document