scholarly journals Center of pressure-based postural sway differences on parallel and single leg stance in Olympic deaf basketball and volleyball players

2021 ◽  
Vol 17 (6) ◽  
pp. 418-427
Author(s):  
Yücel Makaracı ◽  
Recep Soslu ◽  
Ömer Özer ◽  
Abdullah Uysal

In sports such as basketball and volleyball, loss of balance due to the inability to maintain body stability and lack of postural control adversely affect athletic performance. Deaf athletes appear to struggle with balance and postural stability problems. The purpose of this study was to examine postural sway values in parallel and single leg stance of Olympic deaf basketball and volleyball players and reveal differences between the branches. Twenty-three male athletes from the Turkish national deaf basketball (n= 11) and volleyball (n= 12) teams participated in the study. After anthropometric measurements, the subjects completed postural sway (PS) tests in parallel/single leg stances with open eyes and closed eyes on a force plate. PS parameters (sway path, velocity, and area) obtained from the device software were used for the statistical analysis. The Mann-Whitney U-test was used to compare differences in PS parameters between basketball and volleyball players, and the alpha value was accepted as 0.05. Volleyball players had significantly better results in parallel stance and dominant leg PS values than basketball players (P<0.05). There was no significant difference between the groups in nondominant leg PS values (P>0.05). We think that proprioceptive and vestibular system enhancing training practices to be performed with stability exercises will be beneficial in terms of both promoting functional stability and interlimb coordination. Trainers and strength coaches should be aware of differences in the postural control mechanism of deaf athletes.

Author(s):  
Dorota Borzucka ◽  
Krzysztof Kręcisz ◽  
Zbigniew Rektor ◽  
Michał Kuczyński

Abstract Background The aim of this study was to compare the postural control of the Poland national women’s volleyball team players with a control group of non-training young women. It was hypothesized that volleyball players use a specific balance control strategy due to the high motor requirements of their team sport. Methods Static postural sway variables were measured in 31 athletes and 31 non-training women. Participants were standing on a force plate with eyes open, and their center of pressure signals were recorded for the 20s with the sampling rate of 20 Hz in the medial-lateral (ML) and anterior-posterior (AP) planes. Results In both AP and ML planes, athletes had lower range and higher fractal dimension of the COP. They had also higher peak frequency than control group in the ML plane only. The remaining COP indices including variability, mean velocity and mean frequency did not display any intergroup differences. Conclusion It can be assumed that due to the high motor requirements of their sport discipline Polish female volleyball players have developed a unique posture control. On the court they have to distribute their sensory resources optimally between balance control and actions resulting from the specifics of the volleyball game. There are no clearly defined criteria for optimal postural strategies for elite athletes, but they rather vary depending on a given sport. The results of our research confirm this claim. Trial registration The tests were previously approved by the Bioethical Commission of the Chamber of Physicians in Opole. (Resolution No. 151/13.12.2007). This study adheres to the CONSORT guidelines.


2020 ◽  
Vol 29 (2) ◽  
pp. 174-178
Author(s):  
Kelly M. Meiners ◽  
Janice K. Loudon

Purpose/Background: Various methods are available for assessment of static and dynamic postural stability. The primary purpose of this study was to investigate the relationship between dynamic postural stability as measured by the Star Excursion Balance Test (SEBT) and static postural sway assessment as measured by the TechnoBody™ Pro-Kin in female soccer players. A secondary purpose was to determine side-to-side symmetry in this cohort. Methods: A total of 18 female soccer players completed testing on the SEBT and Technobody™ Pro-Kin balance device. Outcome measures were anterior, posterior medial, and posterior lateral reaches from the SEBT and center of pressure in the x- and y-axes as well as SD of movement in the forward/backward and medial/lateral directions from the force plate on left and right legs. Bivariate correlations were determined between the 8 measures. In addition, paired Wilcoxon signed-rank tests were performed to determine similarity between limb scores. Results: All measures on both the SEBT and postural sway assessment were significantly correlated when comparing dominant with nondominant lower-extremities with the exception of SD of movement in both x- and y-axes. When correlating results of the SEBT with postural sway assessment, a significant correlation was found between the SEBT right lower-extremity posterior lateral reach (r = .567, P < .05) and summed SEBT (r = .486, P < .05) and the center of pressure in the y-axis. A significant correlation was also found on the left lower-extremity, with SD of forward/backward movement and SEBT posterior medial reach (r = −.511, P < .05). Conclusions: Dynamic postural tests and static postural tests provide different information to the overall assessment of balance in female soccer players. Relationship between variables differed based on the subject’s lower-extremity dominance.


Author(s):  
Bożena Wojciechowska-Maszkowska ◽  
Dorota Borzucka

The aim of this study was to evaluate the effect of additional load on postural-stability control in young women. To evaluate postural control in the 34 women in this study (mean age, 20.8 years), we measured postural sway (center of pressure, COP) in a neutral stance (with eyes open) in three trials of 30 s each. Three load conditions were used in the study: 0, 14, and 30 kg. In analysis, we used three COP parameters, variability (linear), mean sway velocity (linear), and entropy (nonlinear). Results suggested that a considerable load on a young woman’s body (approximately 48% of body weight) had significant influence on stability. Specifically, heavy loads triggered random movements, increased the dynamics of postural-stability control, and required more attention to control standing posture. The results of our study indicate that inferior postural control mainly results from insufficient experience in lifting such a load.


Author(s):  
Elżbieta Piątek ◽  
Michał Kuczyński ◽  
Bożena Ostrowska

Due to balance deficits that accompany adolescent idiopathic scoliosis (AIS), the potential interaction between activities of daily living and active self-correction movements (ASC) on postural control deserves particular attention. Our purpose was to assess the effects of ASC movements with or without a secondary mental task on postural control in twenty-five girls with AIS. It is a quasi-experimental within-subject design with repeated measures ANOVA. They were measured in four 20-s quiet standing trials on a force plate: no task, ASC, Stroop test, and both. Based on the center-of-pressure (COP) recordings, the COP parameters were computed. The ASC alone had no effect on any of the postural sway measures. Stroop test alone decreased COP speed and increased COP entropy. Performing the ASC movements and Stroop test together increased the COP speed and decreased COP entropy as compared to the baseline data. In conclusion, our results indicate that AIS did not interfere with postural control. The effects of the Stroop test accounted for good capacity of subjects with AIS to take advantage of distracting attentional resources from the posture. However, performing both tasks together exhibited some deficits in postural control, which may suggest the need for therapeutic consultation while engaging in more demanding activities.


2014 ◽  
Vol 21 (2) ◽  
pp. 139-143 ◽  
Author(s):  
Lucas Maciel Rabello ◽  
Christiane de Souza Guerino Macedo ◽  
André Wilson Gil ◽  
Marcio Rogério de Oliveira ◽  
Vinícius Arantes Coelho ◽  
...  

This study aimed to compare the postural balance of professional tae kwon do athletes with a non-tae kwon do adult group. Nineteen participants (nine tae kwon do practitioners and ten non-tae kwon do practitioners) were tested. To measure the postural sway, a force platform was used and the equipment recorded the main parameters: area of center of pressure; mean frequency, and velocity of center of pressure for both anteroposterior and mediolateral directions were measured for all participants. Before starting the assessment, the subjects received instructions and performed familiarization with the equipment and protocol. Participants were instructed to carry out three balance tests on a single-leg stance position with eyes opened. Values obtained in the postural assessment of professional athletes with the force platform were lower for all parameters compared to non-practitioners, except the frequency of center of pressure in the mediolateral direction. However, a significant difference (p=0.021) between the groups was found only in the center of pressure velocity parameter in the anteroposterior direction. These results have any implications on sport rehabilitation programs for balance assessments in athletes.


2021 ◽  
Vol 12 ◽  
Author(s):  
Anat V. Lubetzky ◽  
Jennifer L. Kelly ◽  
Bryan D. Hujsak ◽  
Jenny Liu ◽  
Daphna Harel ◽  
...  

Virtual reality allows for testing of multisensory integration for balance using portable Head Mounted Displays (HMDs). HMDs provide head kinematics data while showing a moving scene when participants are not. Are HMDs useful to investigate postural control? We used an HMD to investigate postural sway and head kinematics changes in response to auditory and visual perturbations and whether this response varies by context. We tested 25 healthy adults, and a small sample of people with diverse monaural hearing (n = 7), or unilateral vestibular dysfunction (n = 7). Participants stood naturally on a stable force-plate and looked at 2 environments via the Oculus Rift (abstract “stars;” busy “street”) with 3 visual and auditory levels (static, “low,” “high”). We quantified medio-lateral (ML) and anterior-posterior (AP) postural sway path from the center-of-pressure data and ML, AP, pitch, yaw and roll head path from the headset. We found no difference between the different combinations of “low” and “high” visuals and sounds. We then combined all perturbations data into “dynamic” and compared it to the static level. The increase in path between “static” and “dynamic” was significantly larger in the city environment for: Postural sway ML, Head ML, AP, pitch and roll. The majority of the vestibular group moved more than controls, particularly around the head, when the scenes, especially the city, were dynamic. Several patients with monaural hearing performed similar to controls whereas others, particularly older participants, performed worse. In conclusion, responses to sensory perturbations are magnified around the head. Significant differences in performance between environments support the importance of context in sensory integration. Future studies should further investigate the sensitivity of head kinematics to diagnose vestibular disorders and the implications of aging with hearing loss to postural control. Balance assessment and rehabilitation should be conducted in different environmental contexts.


2019 ◽  
Vol 9 (11) ◽  
pp. 113 ◽  
Author(s):  
Harish Chander ◽  
Sachini N. K. Kodithuwakku Arachchige ◽  
Christopher M. Hill ◽  
Alana J. Turner ◽  
Shuchisnigdha Deb ◽  
...  

Background: Virtual reality (VR) is becoming a widespread tool in rehabilitation, especially for postural stability. However, the impact of using VR in a “moving wall paradigm” (visual perturbation), specifically without and with anticipation of the perturbation, is unknown. Methods: Nineteen healthy subjects performed three trials of static balance testing on a force plate under three different conditions: baseline (no perturbation), unexpected VR perturbation, and expected VR perturbation. The statistical analysis consisted of a 1 × 3 repeated-measures ANOVA to test for differences in the center of pressure (COP) displacement, 95% ellipsoid area, and COP sway velocity. Results: The expected perturbation rendered significantly lower (p < 0.05) COP displacements and 95% ellipsoid area compared to the unexpected condition. A significantly higher (p < 0.05) sway velocity was also observed in the expected condition compared to the unexpected condition. Conclusions: Postural stability was lowered during unexpected visual perturbations compared to both during baseline and during expected visual perturbations, suggesting that conflicting visual feedback induced postural instability due to compensatory postural responses. However, during expected visual perturbations, significantly lowered postural sway displacement and area were achieved by increasing the sway velocity, suggesting the occurrence of postural behavior due to anticipatory postural responses. Finally, the study also concluded that VR could be used to induce different postural responses by providing visual perturbations to the postural control system, which can subsequently be used as an effective and low-cost tool for postural stability training and rehabilitation.


2019 ◽  
Vol 28 (8) ◽  
pp. 840-846 ◽  
Author(s):  
Jessica Ferreira ◽  
André Bebiano ◽  
Daniel Raro ◽  
João Martins ◽  
Anabela G. Silva

Context: Sliding and tensioning neural mobilization are used to restore normal function of the nervous system, but they impose different stresses on it. Particularly, sliding induces greater nerve excursion than tensioning. Conceivably, they might impact nervous system function differently. Objective: To compare the effects of tensioning neural mobilization versus sliding neural mobilization of the dominant lower limb on static postural control and hop testing. Design: Randomized, parallel and double blinded trial. Setting/Participants: Thirty-seven football players. Intervention(s): Participants were randomized into 2 groups: sliding neural mobilization (n = 18) or tensioning neural mobilization (n = 19) targeting the tibial nerve. Main Outcome Measures: Static postural sway was assessed with a force plate and functional performance with hop tests. Measurements were taken at baseline, after the intervention, and at 30-minute follow-up. Results: There was a significant effect of time for the center of pressure total displacement and velocity (P < .05), for the single-leg hop test (P < .05), the 6-m timed hop test (P < .05), and the cross-over hop test (P < .05), but no significant effect of the intervention. Conclusions: Sliding and tensioning neural mobilization improved postural control and hop testing in football players, and improvements remained 30 minutes after the intervention. Additional research examining the influence of neural mobilization on sensory motor impairments, postural control, and functional performance is needed.


Author(s):  
Youngsook Bae

The crossover trial study aimed to identify the saccadic eye movement (SEM) frequency to improve postural sway (PS) and plantar cutaneous sensation (PUS) in young adults. The 17 participants randomly performed 0.5-, 2-, and 3-Hz SEM. The SEM frequency was determined to allow the target to appear once per 2 s (0.5 Hz), twice per second (2 Hz), or thrice per second (3 Hz). SEM performance time was 3 min with a washout period of 5 min. PS and PUS were measured at baseline and during 0.5-Hz, 2-Hz, and 3-Hz SEMs using a Zebris FDM 1.5 force plate. PS was determined by measuring the sway area, path length, and speed of center of pressure (COP) displacement, and PUS was determined via the plantar surface area (PSA). In PS parameters, there was a significant difference among the SEM frequencies in the COPsway area PSAleft foot and PSAright foot. Compared to that at baseline, COPsway area decreased at 0.5 Hz and 2 Hz, while PSAleft foot and PSAright foot increased at 2 Hz. These results suggest that 2 Hz SEM may improve PS and PSA.


2015 ◽  
Vol 9 (1) ◽  
Author(s):  
Ana Silvia Moccellin ◽  
Fernanda G. S. A. Nora ◽  
Paula H. L. Costa ◽  
Patricia Driusso

The hormonal and anatomic changes during pregnancy affect the musculoskeletal system and may lead to instability of static postural control and increased risk of falls. The aim of this study was to analyze changes in static postural control during the three trimesters of pregnancy, using variables derived from the center of pressure. This is a descriptive study in which posturographic tests were applied in four still standing positions, for three trials, with a combination of different visual conditions (eyes open - EO/eyes closed - EC) and support base configurations on 20 non-pregnant women (C) and 13 pregnant women during the gestational period (G1, G2 and G3). For static postural control assessment, a force plate (Bertec®) was used, and the variables analyzed were statokinesigram area, displacement amplitude, displacement velocity and sway frequency. The results demonstrate that, early in pregnancy, the woman's body seems to already change postural control, probably due to increased mobility of the sacroiliac joint and pubic symphysis caused by hormonal factors, and during the trimesters there is a decrease in postural stability, observed as an increase in the elliptical areas, amplitudes of center of pressure displacement and velocity of center of pressure displacement.


Sign in / Sign up

Export Citation Format

Share Document