scholarly journals Rab1 GTPase and Dimerization in the Cell Surface Expression of Angiotensin II Type 2 Receptor

2009 ◽  
Vol 330 (1) ◽  
pp. 109-117 ◽  
Author(s):  
Xiaoping Zhang ◽  
Guansong Wang ◽  
Denis J. Dupré ◽  
Yumei Feng ◽  
Mélanie Robitaille ◽  
...  
Diabetes Care ◽  
2003 ◽  
Vol 26 (5) ◽  
pp. 1540-1544 ◽  
Author(s):  
L. Duvillard ◽  
E. Florentin ◽  
G. Lizard ◽  
J.-M. Petit ◽  
F. Galland ◽  
...  

2020 ◽  
Vol 21 (24) ◽  
pp. 9602
Author(s):  
Rafael Franco ◽  
Alejandro Lillo ◽  
Rafael Rivas-Santisteban ◽  
Ana I. Rodríguez-Pérez ◽  
Irene Reyes-Resina ◽  
...  

Angiotensin-converting enzyme 2 (ACE2) is a membrane peptidase and a component of the renin-angiotensin system (RAS) that has been found in cells of all organs, including the lungs. While ACE2 has been identified as the receptor for severe acute respiratory syndrome (SARS) coronaviruses, the mechanism underlying cell entry remains unknown. Human immunodeficiency virus infects target cells via CXC chemokine receptor 4 (CXCR4)-mediated endocytosis. Furthermore, CXCR4 interacts with dipeptidyl peptidase-4 (CD26/DPPIV), an enzyme that cleaves CXCL12/SDF-1, which is the chemokine that activates this receptor. By analogy, we hypothesized that ACE2 might also be capable of interactions with RAS-associated G-protein coupled receptors. Using resonance energy transfer and cAMP and mitogen-activated protein kinase signaling assays, we found that human ACE2 interacts with RAS-related receptors, namely the angiotensin II type 1 receptor (AT1R), the angiotensin II type 2 receptor (AT2R), and the MAS1 oncogene receptor (MasR). Although these interactions led to various alterations of signal transduction, but, more importantly, ligand binding to AT1R resulted in the downregulation of ACE2 cell surface expression, while ligand binding to AT2R, but not to MasR, resulted in upregulation of ACE2 cell surface expression. Proximity ligation assays performed in situ revealed macromolecular complexes containing ACE2 and AT1R, AT2R or MasR in adult but not fetal mouse lung tissue. These findings highlight the relevance of RAS in SARS-CoV-2 infection and the role of ACE2-containing complexes as potential therapeutic targets.


2002 ◽  
Vol 76 (18) ◽  
pp. 9271-9283 ◽  
Author(s):  
Zhenghong Fan ◽  
Michael L. Grantham ◽  
M. Shane Smith ◽  
Eric S. Anderson ◽  
James A. Cardelli ◽  
...  

ABSTRACT Formation of small polykaryons by cell-cell fusion is characteristic of herpes simplex virus (HSV) lesions, but the great majority of viruses isolated from such lesions produce only limited cell fusion in tissue culture. Because of this, HSV laboratory strains that produce extensive cell fusion (syncytium formation) in culture are regarded as variants or mutants. Furthermore, the rarity of clinical isolates able to produce syncytia in culture suggests that extensive cell fusion is deleterious in vivo. Mutations that confer a syncytial phenotype can then be regarded as bypassing a mechanism that normally limits cell fusion. Determination of how these mutations, some of which are in the cytoplasmic tail of glycoprotein B (gB), lead to syncytium formation will likely reveal how fusion is controlled. Here we show the following. (i) Truncation of the cytoplasmic tail of HSV type 2 gB (gB-2) by a minimum of 25 residues or a maximum of 49 residues produces a syncytial phenotype. (ii) Truncation by 20 to 49 residues increases cell fusion when gB-2 is coexpressed with only gD-2, gH-2, and gL-2. (iii) Truncation by 25 or more residues removes a potential endocytosis motif and increases gB-2 cell surface expression. (iv) Mutation of this motif increases gB-2 cell surface expression but does not increase fusogenic activity, whereas mutation of another potential endocytosis motif does not increase surface expression but does increase fusogenic activity. Therefore, syncytial mutations in the cytoplasmic tail of gB-2 do not act by increasing cell surface levels of the protein.


2013 ◽  
Vol 61 (6) ◽  
pp. 972-977 ◽  
Author(s):  
Peter Horvath ◽  
Stacy R. Oliver ◽  
Goutham Ganesan ◽  
Frank P. Zaldivar ◽  
Shlomit Radom-Aizik ◽  
...  

2014 ◽  
Vol 307 (1) ◽  
pp. F53-F57 ◽  
Author(s):  
Glenn T. Nagami ◽  
Alexandria K. Plumer ◽  
Raymond M. Beyda ◽  
Oran Schachter

Angiotensin II (ANG II) acting through its type 1 (AT1) receptor stimulates total ammonia (tNH3) production by the proximal tubule. The present studies explored the role of ANG II type 2 (AT2) receptors in modulating the stimulatory effects of ANG II on tNH3 production. Mouse S2 proximal tubule segments derived from 18-h and 7-day acid-loaded mice, and non-acid-loaded controls were dissected and microperfused in vitro. Adding ANG II to the luminal perfusion solution resulted in different increments in tNH3 production rates in tubules derived from 18-h vs. 7-day acid-loaded mice such that the increase in tNH3 production with ANG II was higher in tubules derived from 18-h acid-loaded mice compared with those derived from control and 7-day acid-loaded mice. Adding the AT2 receptor blocker PD123319 with ANG II increased ANG II-stimulated tNH3 production in S2 segments from control and 7-day acid-loaded mice but not in those from 18-h acid-loaded mice, and this increased effect of PD123319 was associated with higher AT2 receptor protein levels in brush-border membranes. Studies in cultured proximal tubule cells demonstrated that 2-h exposure to pH 7.0 reduced the modulating effect of PD123319 on ANG II-simulated tNH3 production and reduced cell surface AT2 receptor levels. We concluded that AT2 receptors reduce the stimulatory effect of ANG II on proximal tubule tNH3 production and that the time-dependent impact of AT2 receptor blockade on the ANG II-stimulated tNH3 production corresponded to time-dependent changes in AT2 receptor cell surface expression in the proximal tubule.


2005 ◽  
Vol 79 (16) ◽  
pp. 10547-10560 ◽  
Author(s):  
Jan Münch ◽  
Michael Schindler ◽  
Steffen Wildum ◽  
Elke Rücker ◽  
Nicola Bailer ◽  
...  

ABSTRACT The nef gene of the pathogenic simian immunodeficiency virus (SIV) mac239 clone has been well characterized. Little is known, however, about the function of nef alleles derived from naturally SIVsm-infected sooty mangabeys (Cercocebus atys) and from human immunodeficiency virus type 2 (HIV-2)-infected individuals. Addressing this, we demonstrate that, similarly to the SIVmac239 nef, primary SIVsm and HIV-2 nef alleles down-modulate cell surface expression of human CD4, CD28, CD3, and class I or II major histocompatibility complex (MHC-I or MHC-II, respectively) molecules, up-regulate surface expression of the invariant chain (Ii) associated with immature MHC-II, inhibit early T-cell activation events, and enhance virion infectivity. Both also stimulate viral replication, although HIV-2 nef alleles were less active in this assay than SIVsm nef alleles. Mutational analysis showed that a dileucine-based sorting motif in the C-proximal loop of SIV or HIV-2 Nef is critical for its effects on CD4, CD28, and Ii but dispensable for down-regulation of CD3, MHC-I, and MHC-II. The C terminus of SIV and HIV-2 Nef was exclusively required for down-modulation of MHC-I, further demonstrating that analogous functions are mediated by different domains in Nef proteins derived from different groups of primate lentiviruses. Our results demonstrate that none of the eight Nef functions investigated had been newly acquired after cross-species transmission of SIVsm from naturally infected mangabeys to humans or macaques. Notably, HIV-2 and SIVsm nef alleles efficiently down-modulate CD3 and C28 surface expression and inhibit T-cell activation more efficiently than HIV-1 nef alleles. These differences in Nef function might contribute to the relatively low levels of immune activation observed in HIV-2-infected human individuals.


Sign in / Sign up

Export Citation Format

Share Document