Involvement of Rho-Kinase Pathway for Angiotensin II-Induced Plasminogen Activator Inhibitor-1 Gene Expression and Cardiovascular Remodeling in Hypertensive Rats

2002 ◽  
Vol 301 (2) ◽  
pp. 459-466 ◽  
Author(s):  
Naohiko Kobayashi ◽  
Shigefumi Nakano ◽  
Shin-ichiro Mita ◽  
Tsutomu Kobayashi ◽  
Takeaki Honda ◽  
...  
Hypertension ◽  
2000 ◽  
Vol 36 (suppl_1) ◽  
pp. 721-721
Author(s):  
Kotaro Takeda ◽  
Toshihiro Ichiki ◽  
Tomotake Tokunou ◽  
Satoshi Fujii ◽  
Akira Kitabatake ◽  
...  

P157 Plasminogen activator inhibitor-1 (PAI-1) plays an integral role not only in the regulation of plasminogen activity and fibrinolytic system but also in the pathogenesis of atherosclerosis and hypertension. Because angiotensin II (Ang II) is also involved in these processes, we investigated its role in the intracellular signaling cascade leading to PAI-1 gene expression in vascular smooth muscle cells (VSMC). Ang II increased the PAI-1 mRNA and protein levels through Ang II type 1 receptor. Although PAI-1 mRNA stability was not increased by Ang II, PAI-1 gene promoter activity, which was measured by luciferase assay, was significantly increased by Ang II. This process did not require de novo protein synthesis. BAPTA-AM, genistein and AG1478 completely inhibited the Ang II-induced PAI-1 mRNA upregulation, suggesting that intracellular calcium, tyrosine kinase and epidermal growth factor (EGF) receptor transactivation were involved in this process. However, inhibition of protein kinase C (PKC) by calphostin C, GF109203, or prolonged exposure to PMA failed to abolish the Ang II-induced PAI-1 upregulation, suggesting PKC pathway was not involved. PD98059 suppressed Ang II-induced PAI-1 upregulation, whereas SB203580 did not, suggesting that MEK/ERK1/2 pathway rather than p38 MAP kinase pathway was crucial in this process. Furthermore, adenovirus-mediated expression of dominant negative form of Rho kinase or Rho kinase inhibitor Y27632 also completely suppressed PAI-1 induction by Ang II without affecting Ang II-induced ERK1/2 activation. These data suggest that activation of both MEK/ERK1/2 and Rho kinase pathways will be necessary for the upregulation of PAI-1 gene expression and these two pathways may act synergically to promote PAI-1 gene transcription at least at the downstream of ERK1/2 in VSMC. These findings are important biological and therapeutical implications for the evolution of arterial wall thrombus and the pathogenesis of atherosclerosis by Ang II.


2010 ◽  
Vol 78 (1) ◽  
pp. 135-141 ◽  
Author(s):  
Katsutaka Oishi ◽  
Satoru Koyanagi ◽  
Naoya Matsunaga ◽  
Koji Kadota ◽  
Eriko Ikeda ◽  
...  

2002 ◽  
Vol 87 (2) ◽  
pp. 448-452 ◽  
Author(s):  
Pairunyar Sawathiparnich ◽  
Sandeep Kumar ◽  
Douglas E. Vaughan ◽  
Nancy J. Brown

Recent studies have defined a link between the renin-angiotensin-aldosterone system and fibrinolysis. The present study tests the hypothesis that endogenous aldosterone regulates plasminogen activator inhibitor-1 (PAI-1) production in humans. Hemodynamic parameters, PAI-1 and tissue-type plasminogen activator (t-PA) antigen, potassium, PRA, angiotensin II, and aldosterone were measured in nine male hypertensive subjects after a 3-wk washout, after 2 wk of hydrochlorothiazide (HCTZ; 25 mg plus 20 mmol KCl/d), and after 2 wk of spironolactone (100 mg/d plus KCl placebo). Spironolactone (P = 0.04), but not HCTZ (P = 0.57 vs. baseline; P = 0.1 vs. spironolactone), significantly lowered systolic blood pressure. Angiotensin II increased from baseline during both HCTZ (P = 0.02) and spironolactone (P = 0.02 vs. baseline; P = 0.19 vs. HCTZ) treatments. Although both HCTZ (P = 0.004) and spironolactone (P < 0.001 vs. baseline) increased aldosterone, the effect was greater with spironolactone (P < 0.001 vs. HCTZ). HCTZ increased PAI-1 antigen (P = 0.02), but did not alter t-PA antigen. In contrast, there was no effect of spironolactone on PAI-1 antigen (P = 0.28), whereas t-PA antigen was increased (P = 0.01). There was a significant correlation between PAI-1 antigen and serum aldosterone during both baseline and HCTZ study days (r2 = 0.57; P = 0.0003); however, treatment with spironolactone abolished this correlation (r2 = 0.13; P = 0.33). This study provides evidence that endogenous aldosterone influences PAI-1 production in humans.


2012 ◽  
Vol 44 (24) ◽  
pp. 1201-1207 ◽  
Author(s):  
Ingrid Eftedal ◽  
Arve Jørgensen ◽  
Ragnhild Røsbjørgen ◽  
Arnar Flatberg ◽  
Alf O. Brubakk

Diving causes a transient reduction of vascular function, but the mechanisms behind this are largely unknown. The aim of this study was therefore to analyze genetic reactions that may be involved in acute changes of vascular function in divers. Rats were exposed to 709 kPa of hyperbaric air (149 kPa Po2) for 50 min followed by postdive monitoring of vascular bubble formation and full genome microarray analysis of the aorta from diving rats ( n = 8) and unexposed controls ( n = 9). Upregulation of 23 genes was observed 1 h after simulated diving. The differential gene expression was characteristic of cellular responses to oxidative stress, with functions of upregulated genes including activation and fine-tuning of stress-responsive transcription, cytokine/cytokine receptor signaling, molecular chaperoning, and coagulation. By qRT-PCR, we verified increased transcription of neuron-derived orphan receptor-1 ( Nr4a3), plasminogen activator inhibitor 1 ( Serpine1), cytokine TWEAK receptor FN14 ( Tnfrsf12a), transcription factor class E basic helix-loop-helix protein 40 ( Bhlhe40), and adrenomedullin ( Adm). Hypoxia-inducible transcription factor HIF1 subunit HIF1-α was stabilized in the aorta 1 h after diving, and after 4 h there was a fivefold increase in total protein levels of the procoagulant plasminogen activator inhibitor 1 (PAI1) in blood plasma from diving rats. The study did not have sufficient power for individual assessment of effects of hyperoxia and decompression-induced bubbles on postdive gene expression. However, differential gene expression in rats without venous bubbles was similar to that of all the diving rats, indicating that elevated Po2 instigated the observed genetic reactions.


Sign in / Sign up

Export Citation Format

Share Document