scholarly journals Three-dimensional graphene/Pt nanoparticle composites as freestanding anode for enhancing performance of microbial fuel cells

2015 ◽  
Vol 1 (10) ◽  
pp. e1500372 ◽  
Author(s):  
Shenlong Zhao ◽  
Yuchen Li ◽  
Huajie Yin ◽  
Zhouzhou Liu ◽  
Enxiao Luan ◽  
...  

Microbial fuel cells (MFCs) are able to directly convert about 50 to 90% of energy from oxidation of organic matters in waste to electricity and have great potential application in broad fields such as wastewater treatment. Unfortunately, the power density of the MFCs at present is significantly lower than the theoretical value because of technical limitations including low bacteria loading capacity and difficult electron transfer between the bacteria and the electrode. We reported a three-dimensional (3D) graphene aerogel (GA) decorated with platinum nanoparticles (Pt NPs) as an efficient freestanding anode for MFCs. The 3D GA/Pt–based anode has a continuous 3D macroporous structure that is favorable for microorganism immobilization and efficient electrolyte transport. Moreover, GA scaffold is homogenously decorated with Pt NPs to further enhance extracellular charge transfer between the bacteria and the anode. The MFCs constructed with 3D GA/Pt–based anode generate a remarkable maximum power density of 1460 mW/m2, 5.3 times higher than that based on carbon cloth (273 mW/m2). It deserves to be stressed that 1460 mW/m2 obtained from the GA/Pt anode shows the superior performance among all the reported MFCs inoculated with Shewanella oneidensis MR-1. Moreover, as a demonstration of the real application, the MFC equipped with the freestanding GA/Pt anode has been successfully applied in driving timer for the first time, which opens the avenue toward the real application of the MFCs.

Author(s):  
Jie Yang ◽  
Sasan Ghobadian ◽  
Reza Montazami ◽  
Nastaran Hashemi

Microbial fuel cell (MFC) technology is a promising area in the field of renewable energy because of their capability to use the energy contained in wastewater, which has been previously an untapped source of power. Microscale MFCs are desirable for their small footprints, relatively high power density, fast start-up, and environmentally-friendly process. Microbial fuel cells employ microorganisms as the biocatalysts instead of metal catalysts, which are widely applied in conventional fuel cells. MFCs are capable of generating electricity as long as nutrition is provided. Miniature MFCs have faster power generation recovery than macroscale MFCs. Additionally, since power generation density is affected by the surface-to-volume ratio, miniature MFCs can facilitate higher power density. We have designed and fabricated a microscale microbial fuel cell with a volume of 4 μL in a polydimethylsiloxane (PDMS) chamber. The anode and cathode chambers were separated by a proton exchange membrane. Carbon cloth was used for both the anode and the cathode. Shewanella Oneidensis MR-1 was chosen to be the electrogenic bacteria and was inoculated into the anode chamber. We employed Ferricyanide as the catholyte and introduced it into the cathode chamber with a constant flow rate of approximately 50 μL/hr. We used trypticase soy broth as the bacterial nutrition and added it into the anode chamber approximately every 15 hours once current dropped to base current. Using our miniature MFC, we were able to generate a maximum current of 4.62 μA.


2016 ◽  
Vol 4 (41) ◽  
pp. 15913-15919 ◽  
Author(s):  
Yang Yang ◽  
Tianyu Liu ◽  
Qiang Liao ◽  
Dingding Ye ◽  
Xun Zhu ◽  
...  

Low-cost electrodes were used in miniature microbial fuel cells to generate a remarkably high volumetric power density.


2014 ◽  
Vol 548-549 ◽  
pp. 855-859
Author(s):  
Chin Tsan Wang

Sediment microbial fuel cells (SMFCs) produce electricity through the bacterial oxidation of organic matter contained in the sediment, but the power density is limited and needs to be improved. In this study, a new design of a fined-type cathode with carbon cloth embedded partly, as opposed to completely, in SMFCs were utilized. As a result, the design allowing the cathode to contact air will have a positive effect on the power performance and decrease the resistance of the inner system. The power density in the cases where the cathode was about half soaked was about two folds the case where it was soaked completely. Furthermore, SMFCs would also be seen as a driving force in hastening the COD removal because it was about 1.92-folds the COD removal of the cases where SMFCs where not present. These findings can be applied to sewage treatment and improving the power performance in SMFCs.


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Hung-Yin Tsai ◽  
Wei-Hsuan Hsu ◽  
Ying-Chen Huang

Microbial fuel cells (MFCs), which can generate low-pollution power through microbial decomposition, have become a potentially important technology with applications in environmental protection and energy recovery. The electrode materials used in MFCs are crucial determinants of their capacity to generate electricity. In this study, we investigate the performance of using carbon nanotube (CNT) and graphene-modified carbon-cloth electrodes in a single-chamber MFC. We develop a process for fabricating carbon-based modified electrodes andEscherichia coliHB101 in an air-cathode MFC. The results show that the power density of MFCs can be improved by applying a coat of either graphene or CNT to a carbon-cloth electrode, and the graphene-modified electrode exhibits superior performance. In addition, the enhanced performance of anodic modification by CNT or graphene was greater than that of cathodic modification. The internal resistance decreased from 377 kΩ for normal electrodes to 5.6 kΩ for both electrodes modified by graphene with a cathodic catalyst. Using the modified electrodes in air-cathode MFCs can enhance the performance of power generation and reduce the associated costs.


2016 ◽  
Vol 73 (12) ◽  
pp. 2849-2857
Author(s):  
Catalina González-Nava ◽  
Luis A. Godínez ◽  
Abraham U. Chávez ◽  
Bibiana Cercado ◽  
Luis G. Arriaga ◽  
...  

Abstract Microbial fuel cells (MFCs) are capable of removing the organic matter contained in water while generating a certain amount of electrical power at the same time. One of the most important aspects in the operation of MFCs is the formation of biofilms on the anode. Here, we report the characterization of different carbon electrodes and biofilm using a rapid and easy methodology for the growth of biofilms. The biofilms were developed and generated a voltage in less than 4 days, obtaining a maximum of 0.3 V in the cells. Scanning electron microscopy images revealed that growth of the biofilm was only on the surface of the electrode, and consequently both carbon cloth Electrochem and carbon cloth Roe materials showed a greater quantity of volatile solids on the surface of the anode and power density. The results suggested that the best support was carbon cloth Electrochem because it generated a power density of 13.4 mW/m2 and required only a few hours for the formation of the biofilm.


RSC Advances ◽  
2015 ◽  
Vol 5 (72) ◽  
pp. 58921-58927 ◽  
Author(s):  
Yan Qiao ◽  
Guo-Yun Wen ◽  
Xiao-Shuai Wu ◽  
Long Zou

l-Cysteine tailored porous graphene aerogel anode possesses three dimensional pore structures and biocompatibility surface for increased biocatalyst loading and thus achieves high power density inS. putrefaciensmicrobial fuel cells.


Author(s):  
Da Liu ◽  
Wen-Kai Fang ◽  
Jiangtao Li ◽  
Liling Zhang ◽  
Mei Yan ◽  
...  

In general, more exoelectrogens’ enrichment implies higher power density. However, due to the low electrocatalytic activity of the anode, it limits the performance of microbial fuel cell. Here, based on...


Fuels ◽  
2021 ◽  
Vol 2 (2) ◽  
pp. 168-178
Author(s):  
Marzia Quaglio ◽  
Daniyal Ahmed ◽  
Giulia Massaglia ◽  
Adriano Sacco ◽  
Valentina Margaria ◽  
...  

Sediment microbial fuel cells (SMFCs) are energy harvesting devices where the anode is buried inside marine sediment, while the cathode stays in an aerobic environment on the surface of the water. To apply this SCMFC as a power source, it is crucial to have an efficient power management system, leading to development of an effective energy harvesting technique suitable for such biological devices. In this work, we demonstrate an effective method to improve power extraction with SMFCs based on anodes alternation. We have altered the setup of a traditional SMFC to include two anodes working with the same cathode. This setup is compared with a traditional setup (control) and a setup that undergoes intermittent energy harvesting, establishing the improvement of energy collection using the anodes alternation technique. Control SMFC produced an average power density of 6.3 mW/m2 and SMFC operating intermittently produced 8.1 mW/m2. On the other hand, SMFC operating using the anodes alternation technique produced an average power density of 23.5 mW/m2. These results indicate the utility of the proposed anodes alternation method over both the control and intermittent energy harvesting techniques. The Anode Alternation can also be viewed as an advancement of the intermittent energy harvesting method.


2021 ◽  
Vol 9 (12) ◽  
pp. 7726-7735
Author(s):  
Da Liu ◽  
Weicheng Huang ◽  
Qinghuan Chang ◽  
Lu Zhang ◽  
Ruiwen Wang ◽  
...  

TiN nanoarrays, in situ grown on carbon cloth gather 97.2% of the model exoelectrogen Geobacter, greatly enhancing the MFCs' performance. The experimental results and DFT calculation certify the importance of the micro–nano-hierarchical structure.


Sign in / Sign up

Export Citation Format

Share Document