scholarly journals Hierarchical MoS2 tubular structures internally wired by carbon nanotubes as a highly stable anode material for lithium-ion batteries

2016 ◽  
Vol 2 (7) ◽  
pp. e1600021 ◽  
Author(s):  
Yu Ming Chen ◽  
Xin Yao Yu ◽  
Zhen Li ◽  
Ungyu Paik ◽  
Xiong Wen (David) Lou

Molybdenum disulfide (MoS2), a typical two-dimensional material, is a promising anode material for lithium-ion batteries because it has three times the theoretical capacity of graphite. The main challenges associated with MoS2 anodes are the structural degradation and the low rate capability caused by the low intrinsic electric conductivity and large strain upon cycling. Here, we design hierarchical MoS2 tubular structures internally wired by carbon nanotubes (CNTs) to tackle these problems. These porous MoS2 tubular structures are constructed from building blocks of ultrathin nanosheets, which are believed to benefit the electrochemical reactions. Benefiting from the unique structural and compositional characteristics, these CNT-wired MoS2 tubular structures deliver a very high specific capacity of ~1320 mAh g−1 at a current density of 0.1 A g−1, exceptional rate capability, and an ultralong cycle life of up to 1000 cycles. This work may inspire new ideas for constructing high-performance electrodes for electrochemical energy storage.

2013 ◽  
Vol 1540 ◽  
Author(s):  
Chia-Yi Lin ◽  
Chien-Te Hsieh ◽  
Ruey-Shin Juang

ABSTRACTAn efficient microwave-assisted polyol (MP) approach is report to prepare SnO2/graphene hybrid as an anode material for lithium ion batteries. The key factor to this MP method is to start with uniform graphene oxide (GO) suspension, in which a large amount of surface oxygenate groups ensures homogeneous distribution of the SnO2 nanoparticles onto the GO sheets under the microwave irradiation. The period for the microwave heating only takes 10 min. The obtained SnO2/graphene hybrid anode possesses a reversible capacity of 967 mAh g-1 at 0.1 C and a high Coulombic efficiency of 80.5% at the first cycle. The cycling performance and the rate capability of the hybrid anode are enhanced in comparison with that of the bare graphene anode. This improvement of electrochemical performance can be attributed to the formation of a 3-dimensional framework. Accordingly, this study provides an economical MP route for the fabrication of SnO2/graphene hybrid as an anode material for high-performance Li-ion batteries.


2016 ◽  
Vol 41 (32) ◽  
pp. 14252-14260 ◽  
Author(s):  
Lijun Zhang ◽  
Guanglin Xia ◽  
Zaiping Guo ◽  
Xingguo Li ◽  
Dalin Sun ◽  
...  

RSC Advances ◽  
2016 ◽  
Vol 6 (109) ◽  
pp. 107768-107775 ◽  
Author(s):  
Yew Von Lim ◽  
Zhi Xiang Huang ◽  
Ye Wang ◽  
Fei Hu Du ◽  
Jun Zhang ◽  
...  

Tungsten disulfide nanoflakes grown on plasma activated three dimensional graphene networks. The work features a simple growth of TMDs-based LIBs anode materials that has excellent rate capability, high specific capacity and long cycling stability.


Nanoscale ◽  
2015 ◽  
Vol 7 (28) ◽  
pp. 11940-11944 ◽  
Author(s):  
Yanjun Zhang ◽  
Li Jiang ◽  
Chunru Wang

A porous Sn@C nanocomposite was prepared via a facile hydrothermal method combined with a simple post-calcination process. It exhibited excellent electrochemical behavior with a high reversible capacity, long cycle life and good rate capability when used as an anode material for lithium ion batteries.


RSC Advances ◽  
2015 ◽  
Vol 5 (10) ◽  
pp. 7356-7362 ◽  
Author(s):  
Minchan Li ◽  
Wenxi Wang ◽  
Mingyang Yang ◽  
Fucong Lv ◽  
Lujie Cao ◽  
...  

A novel microcuboid-shaped C–Fe3O4 assembly consisting of ultrafine nanoparticles derived from Fe–MOFs exhibits a greatly enhanced performance with high specific capacity, excellent cycling stability and good rate capability as anode materials for lithium ion batteries.


RSC Advances ◽  
2015 ◽  
Vol 5 (25) ◽  
pp. 19241-19247 ◽  
Author(s):  
Lingyun Guo ◽  
Qiang Ru ◽  
Xiong Song ◽  
Shejun Hu ◽  
Yudi Mo

The as-prepared mesoporous ZnCo2O4 microspheres showed a high specific capacity and excellent electrochemical performance when used as an anode material for lithium ion batteries.


2015 ◽  
Vol 3 (16) ◽  
pp. 8683-8692 ◽  
Author(s):  
Lingyun Guo ◽  
Qiang Ru ◽  
Xiong Song ◽  
Shejun Hu ◽  
Yudi Mo

The as-prepared pineapple-shaped ZCO with a porous nanostructure shows a high specific capacity, superior rate capability and excellent cycling stability when used as an anode material for LIBs.


2018 ◽  
Vol 913 ◽  
pp. 779-785
Author(s):  
Zhong Yi Chen ◽  
Kun Ma ◽  
De Guo Zhou ◽  
Yan Liu ◽  
Yan Zong Zhang

A novel membrane electrode was fabricated by coating conductive slurry (K/Graphene composites as its important component) on copper foil. The membrane electrode, as anode of lithium ion battery, exhibited excellent columbic efficiency and specific capacity of 831 mAh g-1 after 1000 cycles. The K/Graphene composites presented a multi-layer nanostructure. It provided not only more intercalation space and intercalation sites for Li+ during the Li+ intercalation/extraction, but also alleviated the agglomeration of dispersed nanocrystals, as well as decreased the electrochemical impedance. The results suggest that the membrane electrode holds great potential as an anode material for LIBs.


Sign in / Sign up

Export Citation Format

Share Document