scholarly journals Soil erosion is unlikely to drive a future carbon sink in Europe

2018 ◽  
Vol 4 (11) ◽  
pp. eaau3523 ◽  
Author(s):  
Emanuele Lugato ◽  
Pete Smith ◽  
Pasquale Borrelli ◽  
Panos Panagos ◽  
Cristiano Ballabio ◽  
...  

Understanding of the processes governing soil organic carbon turnover is confounded by the fact that C feedbacks driven by soil erosion have not yet been fully explored at large scale. However, in a changing climate, variation in rainfall erosivity (and hence soil erosion) may change the amount of C displacement, hence inducing feedbacks onto the land C cycle. Using a consistent biogeochemistry-erosion model framework to quantify the impact of future climate on the C cycle, we show that C input increases were offset by higher heterotrophic respiration under climate change. Taking into account all the additional feedbacks and C fluxes due to displacement by erosion, we estimated a net source of 0.92 to 10.1 Tg C year−1 from agricultural soils in the European Union to the atmosphere over the period 2016–2100. These ranges represented a weaker and stronger C source compared to a simulation without erosion (1.8 Tg C year−1), respectively, and were dependent on the erosion-driven C loss parameterization, which is still very uncertain. However, when setting a baseline with current erosion rates, the accelerated erosion scenario resulted in 35% more eroded C, but its feedback on the C cycle was marginal. Our results challenge the idea that higher erosion driven by climate will lead to a C sink in the near future.

Science ◽  
2007 ◽  
Vol 318 (5850) ◽  
pp. 626-629 ◽  
Author(s):  
K. Van Oost ◽  
T. A. Quine ◽  
G. Govers ◽  
S. De Gryze ◽  
J. Six ◽  
...  

Agricultural soil erosion is thought to perturb the global carbon cycle, but estimates of its effect range from a source of 1 petagram per year–1to a sink of the same magnitude. By using caesium-137 and carbon inventory measurements from a large-scale survey, we found consistent evidence for an erosion-induced sink of atmospheric carbon equivalent to approximately 26% of the carbon transported by erosion. Based on this relationship, we estimated a global carbon sink of 0.12 (range 0.06 to 0.27) petagrams of carbon per year–1resulting from erosion in the world's agricultural landscapes. Our analysis directly challenges the view that agricultural erosion represents an important source or sink for atmospheric CO2.


Soil Research ◽  
2000 ◽  
Vol 38 (2) ◽  
pp. 313 ◽  
Author(s):  
C. Carroll ◽  
L. Merton ◽  
P. Burger

In 1993, a field study commenced to determine the impact of vegetative cover and slope on runoff, erosion, and water quality at 3 open-cut coal mine sites. Runoff, sediment, and water quality were measured on 0.01-ha field plots from 3 slope gradients (10, 20, 30%), with pasture and tree treatments imposed on soil and spoil material, and 2 soil and spoil plots left bare. The greatest soil erosion occurred before pasture cover established, when a large surface area of soil (>0.5 plot area) was exposed to rainfall and overland flow. Once buffel grass (Cenchrus ciliaris) colonised soil plots, there were negligible differences in soil erosion between slope gradients. On spoil, Rhodes grass (Chloris gayana) reduced in situ soluble salt content, and reduced runoff electrical conductivity to levels measured in surrounding creeks. Where spoil crusted there was poor vegetative growth and unacceptably large runoff and erosion rates throughout the study.


2020 ◽  
Vol 6 (3) ◽  
pp. 270-297
Author(s):  
A. I. Pogorletskiy ◽  
◽  
F. Söllner ◽  

In this article, we shall see how pandemics of deadly diseases have changed tax systems over the past two millennia, each time leading to the emergence of new forms of taxation and tax administration. The purpose of the article is to prove that pandemics and the most notable innovations in tax policy are closely interrelated and that the consequences of the largest pandemics in the history of mankind are new approaches to the organization of national tax systems as well as the formation of interstate tax regulation. The lessons from history can be applied to the current corona crisis and may help us devise the appropriate anti-crisis tax policy. The study is based on the historical empirical-inductive method applied to reliable facts of the past related to pandemics and taxation. We trace the evolution of tax policy under the impact of the most significant pandemics and identify patterns of taxation and tax administration that are specific to their eras and are still relevant in the course of the pandemic COVID-19. Our analysis allows us to draw the following conclusions: (1) There is a historical link between pandemics and tax regulation. Many tax innovations originated in response to the consequences of large-scale epidemics of deadly diseases. (2) Many of the tax incentive tools used today in the fight against the corona crisis have already been used during previous pandemics so that we may learn from the experience of earlier times. (3) The COVID-19 pandemic can be expected to have several important consequences for taxation and public finance: innovations in tax administration with an emphasis on remote fiscal audits and digital control; innovations in the taxation of digital companies and their operations at the national and international level; possibly fundamental changes in the tax system of the European Union; and possibly a return of the inflation tax.


2020 ◽  
Author(s):  
Qiang Dai ◽  
Jingxuan Zhu ◽  
Shuliang Zhang ◽  
Shaonan Zhu ◽  
Dawei Han ◽  
...  

Abstract. Soil erosion can cause various ecological problems, such as land degradation, soil fertility loss, and river siltation. Rainfall is the primary water-driving force for soil erosion and its potential effect on soil erosion is reflected by rainfall erosivity that relates to the raindrop kinetic energy (KE). As it is difficult to observe large-scale dynamic characteristics of raindrops, all the current rainfall erosivity models use the function based on rainfall amount to represent the raindrops KE. With the development of global atmospheric re-analysis data, numerical weather prediction (NWP) techniques become a promising way to estimate rainfall KE directly at regional and global scales with high spatial and temporal resolutions. This study proposed a novel method for large-scale and long-term rainfall erosivity investigations based on the Weather Research and Forecasting (WRF) model, avoiding errors caused by inappropriate rainfall–energy relationships and large-scale interpolation. We adopted three microphysical parameterizations schemes (Morrison, WDM6, and Thompson aerosol-aware [TAA]) to obtain raindrop size distributions, rainfall KE and rainfall erosivity, with validation by two disdrometers and 304 rain gauges around the United Kingdom. Among the three WRF schemes, TAA had the best performance compared with the disdrometers at a monthly scale. The results revealed that high rainfall erosivity occurred in the west coast area at the whole country scale during 2013–2017. The proposed methodology makes a significant contribution to improving large-scale soil erosion estimation and for better understanding microphysical rainfall–soil interactions to support the rational formulation of soil and water conservation planning.


2021 ◽  
Vol 15 (3) ◽  
pp. 99-113
Author(s):  
Sławomir Palicki ◽  
Stoyan Stoyanov ◽  
Ivo Kostov ◽  
Tsvetelina Atanasova ◽  
Patrycjusz Ostrowski

The article explores the issue of the function of shopping centres, in particular the analysis of the impact of their presence on society and the local development of cities and regions. Regarding the empirical aspect, the examples of Poznań (Poland) and Varna (Bulgaria) will be presented. As a result of similar socio‑economic conditions and joining the European Union at almost the same moment, all comparative studies reflecting preferences and market reactions seem both viable and interesting. In addition, the two cities chosen for the studies occupy a similar place in the hierarchy of the settlement network in their countries. They are large, well‑developed centres that attract the attention of investors from various segments of the real estate market. The research is part of the modelling of preferences of shopping centre customers areas, which in particular supports the investment decisions of developers operating in the analysed real estate market, and at the same time permits a diagnosis of social satisfaction. A derivative of the research is also the reconstruction of the effects of the functioning of large‑scale shopping malls in two Central‑Eastern European countries.


2020 ◽  
Vol 24 (11) ◽  
pp. 5407-5422
Author(s):  
Qiang Dai ◽  
Jingxuan Zhu ◽  
Shuliang Zhang ◽  
Shaonan Zhu ◽  
Dawei Han ◽  
...  

Abstract. Soil erosion can cause various ecological problems, such as land degradation, soil fertility loss, and river siltation. Rainfall is the primary water-driven force for soil erosion, and its potential effect on soil erosion is reflected by rainfall erosivity that relates to the raindrop kinetic energy. As it is difficult to observe large-scale dynamic characteristics of raindrops, all the current rainfall erosivity models use the function based on rainfall amount to represent the raindrops' kinetic energy. With the development of global atmospheric re-analysis data, numerical weather prediction techniques become a promising way to estimate rainfall kinetic energy directly at regional and global scales with high spatial and temporal resolutions. This study proposed a novel method for large-scale and long-term rainfall erosivity investigations based on the Weather Research and Forecasting (WRF) model, avoiding errors caused by inappropriate rainfall–energy relationships and large-scale interpolation. We adopted three microphysical parameterizations schemes (Morrison, WDM6, and Thompson aerosol-aware) to obtain raindrop size distributions, rainfall kinetic energy, and rainfall erosivity, with validation by two disdrometers and 304 rain gauges around the United Kingdom. Among the three WRF schemes, Thompson aerosol-aware had the best performance compared with the disdrometers at a monthly scale. The results revealed that high rainfall erosivity occurred in the west coast area at the whole country scale during 2013–2017. The proposed methodology makes a significant contribution to improving large-scale soil erosion estimation and for better understanding microphysical rainfall–soil interactions to support the rational formulation of soil and water conservation planning.


2021 ◽  
Author(s):  
Malte Kuegler ◽  
Thomas Hoffmann ◽  
Jana Eichel ◽  
Lothar Schrott ◽  
Juergen Schmidt

<p>There are a multitude of factors that affect soil erosion and the process of sediment movement. One particular factor known to have a considerable impact is vegetation coverage within catchment areas.  Previous studies have examined the impact of vegetation cover on erosion. However, there is a lack of research on how the spatial distribution of vegetation influences erosion rates.</p><p>A greater understanding of hillslope erosion is fundamental in modelling previous and future topographic changes under various climate conditions. Here, the physical based erosion model EROSION 3D © is used to evaluate the impact of a variety of vegetation patterns and degrees of vegetation cover on sediment erosion and transport. The model was applied on a natural catchment in La Campana (Central Chile). For this purpose, three different vegetation patterns were created: (i) random distribution, (ii) water-dependent distribution (TWIR) and (iii) banded vegetation pattern distribution. Additional to this, the areas covered by vegetation generated in the first step were expanded by steps of 10% [0...100%]. The Erosion3D © model then was applied on all vegetation patterns and degrees of cover.</p><p>Our results show an initial increase of soil erosion with increasing plant coverage within the catchment up to a certain cover threshold ranging between 10 and 40%. At larger vegetation cover soil erosion rates decline. The strength of increase and decline, as well as the cover-threshold is strongly conditioned by the spatial vegetation pattern. In the light of this, future research should pay particular attention to the properties of the plants and their distribution, not solely on the amount of biomass within catchment areas.</p>


2014 ◽  
Vol 115 ◽  
pp. 33-43 ◽  
Author(s):  
Anton Vrieling ◽  
Joost C.B. Hoedjes ◽  
Marijn van der Velde

2008 ◽  
Vol 5 (1) ◽  
pp. 73-94 ◽  
Author(s):  
A. Leip ◽  
G. Marchi ◽  
R. Koeble ◽  
M. Kempen ◽  
W. Britz ◽  
...  

Abstract. A comprehensive assessment of policy impact on greenhouse gas (GHG) emissions from agricultural soils requires careful consideration of both socio-economic aspects and the environmental heterogeneity of the landscape. We developed a modelling framework that links the large-scale economic model for agriculture CAPRI (Common Agricultural Policy Regional Impact assessment) with the biogeochemistry model DNDC (DeNitrification DeComposition) to simulate GHG fluxes, carbon stock changes and the nitrogen budget of agricultural soils in Europe. The framework allows the ex-ante simulation of agricultural or agri-environmental policy impacts on a wide range of environmental problems such as climate change (GHG emissions), air pollution and groundwater pollution. Those environmental impacts can be analyzed in the context of economic and social indicators as calculated by the economic model. The methodology consists of four steps: (i) definition of appropriate calculation units that can be considered as homogeneous in terms of economic behaviour and environmental response; (ii) downscaling of regional agricultural statistics and farm management information from a CAPRI simulation run into the spatial calculation units; (iii) designing environmental model scenarios and model runs; and finally (iv) aggregating results for interpretation. We show the first results of the nitrogen budget in croplands in fourteen countries of the European Union and discuss possibilities to improve the detailed assessment of nitrogen and carbon fluxes from European arable soils.


2021 ◽  
pp. 109-117
Author(s):  
Ayodele Owonubi

Soil erosion is a treat to global food security. The objective of this study was to evaluate factors influencing erosion on the arable lands of the Jos Plateau; and to estimate the extent of soil erosion in the area. Universal Soil Loss Equation (USLE) model was used to evaluate soil erosion processes in the study area. This was facilitated with the aid of Geographic Information System Both for Interpolation and Geospatial analysis. Soil data from field survey was the primary source of data for analysis of soil erodibility. Topographic factor was determined from 90-meter elevation data. Rainfall erosivity was determined from rainfall data at 1 kilometer resolution. Whereas vegetation cover factor was determined from Normalized Difference Vegetation Index. Results of the study indicate that rainfall erosivity values were remarkably high and have mean values of 5117MJ.mm/ ha.h.y. Analysis of percent areal coverage indicate that the entire area had 52, 34, 7, and 7% low, moderate, high and very high topographic factors respectively. Further analysis indicate that anthropogenic factors had severely affected vegetation coverage of the Jos plateau, especially on the arable lands. Furthermore, during this research, the mean annual actual and potential soil erosion rates were estimated spatially over the Jos Plateau area. Soil erosion rates were far more than tolerable rates thereby affecting soil fertility and productivity.


Sign in / Sign up

Export Citation Format

Share Document