scholarly journals Projected increases in intensity, frequency, and terrestrial carbon costs of compound drought and aridity events

2019 ◽  
Vol 5 (1) ◽  
pp. eaau5740 ◽  
Author(s):  
Sha Zhou ◽  
Yao Zhang ◽  
A. Park Williams ◽  
Pierre Gentine

Drought and atmospheric aridity pose large risks to ecosystem services and agricultural production. However, these factors are seldom assessed together as compound events, although they often occur simultaneously. Drought stress on terrestrial carbon uptake is characterized by soil moisture (SM) deficit and high vapor pressure deficit (VPD). We used in situ observations and 15 Earth system models to show that compound events with very high VPD and low SM occur more frequently than expected if these events were independent. These compound events are projected to become more frequent and more extreme and exert increasingly negative effects on continental productivity. Models project intensified negative effects of high VPD and low SM on vegetation productivity, with the intensification of SM exceeding those of VPD in the Northern Hemisphere. These results highlight the importance of compound extreme events and their threats for the capability of continents to act as a carbon sink.

2020 ◽  
Vol 6 (47) ◽  
pp. eabb7232
Author(s):  
J. K. Green ◽  
J. Berry ◽  
P. Ciais ◽  
Y. Zhang ◽  
P. Gentine

Earth system models predict that increases in atmospheric and soil dryness will reduce photosynthesis in the Amazon rainforest, with large implications for the global carbon cycle. Using in situ observations, solar-induced fluorescence, and nonlinear machine learning techniques, we show that, in reality, this is not necessarily the case: In many of the wettest parts of this region, photosynthesis and biomass tend to increase with increased atmospheric dryness, despite the associated reductions in canopy conductance to CO2. These results can be largely explained by changes in canopy properties, specifically, new leaves flushed during the dry season have higher photosynthetic capacity than the leaves they replace, compensating for the negative stomatal response to increased dryness. As atmospheric dryness will increase with climate change, our study highlights the importance of reframing how we represent the response of ecosystem photosynthesis to atmospheric dryness in very wet regions, to accurately quantify the land carbon sink.


1998 ◽  
Vol 37 (3) ◽  
pp. 41-49 ◽  
Author(s):  
Gerard Blom ◽  
R. Hans Aalderink

Three resuspension and sedimentation models (Blom, Lick and Partheniades and Krone) are calibrated and evaluated on data from flume experiments with sediments from Lake Ketel and in situ suspended solids measurements. We applied a formal parameter estimation technique in combination with a statistical evaluation of the model fit and parameter estimates. All three models produce a reasonable reconstruction of the data from the flume experiment and the in situ observations. The differences in the model fit of the three models are small, except for the in situ observations. Here the sum of squared residuals for Partheniades and Krone's is about twice the sum for Blom's and Lick's model. The correlation between parameters in resuspension/sedimentation models can be very high, leading to an uncertainty in parameter estimates of 25-50. The parameter estimations based on the flume data are up to orders of magnitude higher than those estimated from field observations.


1997 ◽  
Vol 3 (S2) ◽  
pp. 601-602
Author(s):  
S.-J. Chen ◽  
U. Dahmen ◽  
D.G. Howitt

The interaction of radiation produced point defects with a dislocation microstructure at high temperature is of considerable interest and careful high voltage microscopy experiments can provide valuable insight into the mechanisms. Veyssière and Westmacott carried out in-situ experiments monitoring the partial dislocation climbs in Ni3Al induced by thermal vacancies as well as by Frenkel pairs produced during irradiation.1 We report here the results of some preliminary experiments we performed on alumina (A12O3) single crystals with high dislocation densities to study the modification of the microstructure by electron irradiation at high temperature.The dislocation microstructures were produced by shock wave deformation using a high-velocity impact technique. The technique is capable of producing a very high density of defects consisting primarily of basal twins, and slips on the basal, pyramidal and rhombohedral planes in alumina. The dislocations are all of glide type, mostly forming shear bands. A typical microstructure prior to irradiation is shown in figure la.


2020 ◽  
Author(s):  
Julia K. Green ◽  
Pierre Gentine ◽  
Yao Zhang ◽  
Joe Berry ◽  
Philippe Ciais

<p>Earth system models predict that atmospheric dryness reduces photosynthesis due to its reductive effect on stomatal conductance. However, while this representation may be appropriate in many environments, in the wet Amazonian tropical rainforest, this is not the case. Using remote sensing data combined with machine learning techniques (k-means clustering and artificial neural networks), we show that in the wettest parts of the Amazon rainforest, gross primary production and evapotranspiration continue to increase alongside atmospheric dryness, i.e. vapor pressure deficit, despite reductions in ecosystem conductance. On the other hand, Earth system models have the opposite photosynthetic response to vapor pressure deficit in the wettest part of the Amazon, overestimating its reductive effect on tropical vegetation photosynthesis and evapotranspiration, leading to an exaggerated carbon source to the atmosphere. As vapor pressure deficit is expected to increase with climate change, our study highlights the importance of reframing how we understand and represent the response of ecosystem photosynthesis to atmospheric dryness in the wettest ecosystems, to accurately quantify the future land carbon sink and atmospheric CO2 growth rate.</p>


2021 ◽  
Author(s):  
Bin He ◽  
Chen Chen ◽  
Shangrong Lin ◽  
Wenping Yuan ◽  
Hans W Chen ◽  
...  

Abstract Interannual variability of the terrestrial ecosystem carbon sink is substantially regulated by various environmental variables and highly dominates the interannual variation of atmospheric carbon dioxide (CO2) concentrations. Thus, it is necessary to determine dominating factors affecting the interannual variability of the carbon sink to improve our capability of predicting future terrestrial carbon sinks. Using global datasets derived from machine learning methods and process-based ecosystem models, this study reveals that the interannual variability of the atmospheric vapor pressure deficit (VPD) was significantly negatively correlated with net ecosystem production (NEP) and substantially impacted the interannual variability of the atmospheric CO2 growth rate (CGR). Further analyses found widespread constraints of VPD interannual variability on terrestrial gross primary production (GPP), causing VPD to impact NEP and CGR. Partial correlation analysis confirms the persistent and widespread impacts of VPD on terrestrial carbon sinks compared to other environmental variables. Current Earth system models underestimate the interannual variability in VPD and its impacts on GPP and NEP. Our results highlight the importance of VPD for terrestrial carbon sinks in assessing ecosystems’ responses to future climate conditions.


Author(s):  
T. Marieb ◽  
J. C. Bravman ◽  
P. Flinn ◽  
D. Gardner ◽  
M. Madden

Electromigration and stress voiding have been active areas of research in the microelectronics industry for many years. While accelerated testing of these phenomena has been performed for the last 25 years[1-2], only recently has the introduction of high voltage scanning electron microscopy (HVSEM) made possible in situ testing of realistic, passivated, full thickness samples at high resolution.With a combination of in situ HVSEM and post-testing transmission electron microscopy (TEM) , electromigration void nucleation sites in both normal polycrystalline and near-bamboo pure Al were investigated. The effect of the microstructure of the lines on the void motion was also studied.The HVSEM used was a slightly modified JEOL 1200 EX II scanning TEM with a backscatter electron detector placed above the sample[3]. To observe electromigration in situ the sample was heated and the line had current supplied to it to accelerate the voiding process. After testing lines were prepared for TEM by employing the plan-view wedge technique [6].


2015 ◽  
Vol 8 (4) ◽  
pp. 3235-3292 ◽  
Author(s):  
A. L. Atchley ◽  
S. L. Painter ◽  
D. R. Harp ◽  
E. T. Coon ◽  
C. J. Wilson ◽  
...  

Abstract. Climate change is profoundly transforming the carbon-rich Arctic tundra landscape, potentially moving it from a carbon sink to a carbon source by increasing the thickness of soil that thaws on a seasonal basis. However, the modeling capability and precise parameterizations of the physical characteristics needed to estimate projected active layer thickness (ALT) are limited in Earth System Models (ESMs). In particular, discrepancies in spatial scale between field measurements and Earth System Models challenge validation and parameterization of hydrothermal models. A recently developed surface/subsurface model for permafrost thermal hydrology, the Advanced Terrestrial Simulator (ATS), is used in combination with field measurements to calibrate and identify fine scale controls of ALT in ice wedge polygon tundra in Barrow, Alaska. An iterative model refinement procedure that cycles between borehole temperature and snow cover measurements and simulations functions to evaluate and parameterize different model processes necessary to simulate freeze/thaw processes and ALT formation. After model refinement and calibration, reasonable matches between simulated and measured soil temperatures are obtained, with the largest errors occurring during early summer above ice wedges (e.g. troughs). The results suggest that properly constructed and calibrated one-dimensional thermal hydrology models have the potential to provide reasonable representation of the subsurface thermal response and can be used to infer model input parameters and process representations. The models for soil thermal conductivity and snow distribution were found to be the most sensitive process representations. However, information on lateral flow and snowpack evolution might be needed to constrain model representations of surface hydrology and snow depth.


2021 ◽  
Vol 51 (1) ◽  
Author(s):  
Sze Hoon Gan ◽  
Zarinah Waheed ◽  
Fung Chen Chung ◽  
Davies Austin Spiji ◽  
Leony Sikim ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document