scholarly journals Frictional weakening of slip interfaces

2019 ◽  
Vol 5 (4) ◽  
pp. eaav7603 ◽  
Author(s):  
B. Weber ◽  
T. Suhina ◽  
A. M. Brouwer ◽  
D. Bonn

When two objects are in contact, the force necessary to overcome friction is larger than the force necessary to keep sliding motion going. This difference between static and dynamic friction is usually attributed to the growth of the area of real contact between rough surfaces in time when the system is at rest. We directly measure the area of real contact and show that it actually increases during macroscopic slip, despite the fact that dynamic friction is smaller than static friction. This signals a decrease in the interfacial shear strength, the friction per unit contact area, which is due to a mechanical weakening of the asperities. This provides a novel explanation for stick-slip phenomena in, e.g., earthquakes.

1994 ◽  
Vol 365 ◽  
Author(s):  
John R. Hellmann ◽  
Yeong-Shyung Chou

ABSTRACTThe effect of zirconia (ZrO2) interfacial coatings on the interfacial shear behavior in sapphire reinforced alumina was examined in this study. Zirconia coatings of thicknesses ranging from 0.15 to 1.45 μm were applied to single crystal sapphire (Saphikon) fibers using a particulate loaded sol dipping technique. After calcining at 1100°C in air, the coated fibers were incorporated into a polycrystalline alumina matrix via hot pressing. Interfacial shear strength and sliding behavior of the coated fibers was examined using thin-slice indentation fiber pushout and pushback techniques. In all cases, debonding and sliding occurred at the interface between the fibers and the coating. The coatings exhibited a dense microstructure and led to a higher interfacial shear strength (> 240 MPa) and interfacial sliding stress (>75 MPa) relative to previous studies on the effect of a porous interphase on interfacial properties [1]. The interfacial shear strength decreased with increasing fiber coating thickness (from 389 ± 59 to 241 ± 43 MPa for 0.15 to 1.45 μm thick coatings, respectively). Sliding behavior exhibited load modulation with increasing displacement during fiber sliding which is characteristic of fiber roughnessinduced “stick-slip”. No effect of fiber coating thickness on the interfacial sliding stress was observed for single pushout or pushback events. Heat treatment at 1550°C in air coarsened the fiber surface roughness, resulting in significantly higher interfacial shear strengths (>30%) and interfacial sliding stresses (>60%) relative to the coated fibers in an as-hot-pressed condition. Interfacial sliding resistance decreased significantly after the first sliding cycle. Evidence of substantial “stick-slip” behavior was eliminated from the load displacement plots after one pushout/pushback cycle; however, the pushback plots exhibited evidence of fiber reseating, followed by a decreasing trend in load with increasing displacement of the fiber back to the original position. These results directly support the interphase fragmentation scenario proposed for interface fatigue in ceramic composites.The high interfacial shear strengths and sliding stresses measured in this study, as well as the potentially strength degrading surface reconstruction observed on the coated fibers after hot pressing and heat treatment, indicate that dense zirconia coatings are not suitable candidates for optimizing composite toughness and strength in the sapphire fiber reinforced alumina system.


Materials ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 2552 ◽  
Author(s):  
Uwe Gohs ◽  
Michael Mueller ◽  
Carsten Zschech ◽  
Serge Zhandarov

Continuous glass fiber-reinforced polypropylene composites produced by using hybrid yarns show reduced fiber-to-matrix adhesion in comparison to their thermosetting counterparts. Their consolidation involves no curing, and the chemical reactions are limited to the glass fiber surface, the silane coupling agent, and the maleic anhydride-grafted polypropylene. This paper investigates the impact of electron beam crosslinkable toughened polypropylene, alkylene-functionalized single glass fibers, and electron-induced grafting and crosslinking on the local interfacial shear strength and critical energy release rate in single glass fiber polypropylene model microcomposites. A systematic comparison of non-, amino-, alkyl-, and alkylene-functionalized single fibers in virgin, crosslinkable toughened and electron beam crosslinked toughened polypropylene was done in order to study their influence on the local interfacial strength parameters. In comparison to amino-functionalized single glass fibers in polypropylene/maleic anhydride-grafted polypropylene, an enhanced local interfacial shear strength (+20%) and critical energy release rate (+80%) were observed for alkylene-functionalized single glass fibers in electron beam crosslinked toughened polypropylene.


2014 ◽  
Vol 81 (12) ◽  
Author(s):  
Xi Shi

Slip inception mechanism is very important for modeling of static friction and understanding of some experimental observations of friction. In this work, slip inception was treated as a local competence of interfacial bonding failure and weaker material failure. At any contacting point, if bond shear strength is weaker than softer material shear strength, slip inception is governed by interfacial bonding failure. Otherwise, it is governed by softer material failure. Considering the possible co-existence of these two slip inception mechanisms during presliding, a hybrid static friction model for smooth dry contact was proposed, which indicates that the static friction consists of two components: one contributed by contact area where bonding failure is dominant and the other contributed by contact area where material failure is dominant. With the proposed static friction model, the effects of contact pressure, the material properties, and the contact geometry on static friction were discussed.


Mathematics ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 990
Author(s):  
Yasser Zare ◽  
Kyongyop Rhee

This study focuses on the simultaneous stiffening and percolating characteristics of the interphase section in polymer carbon nanotubes (CNTs) systems (PCNTs) using two advanced models of tensile modulus and strength. The interphase, as a third part around the nanoparticles, influences the mechanical features of such systems. The forecasts agree well with the tentative results, thus validating the advanced models. A CNT radius of >40 nm and CNT length of <5 μm marginally improve the modulus by 70%, while the highest modulus development of 350% is achieved with the thinnest nanoparticles. Furthermore, the highest improvement in nanocomposite’s strength (350%) is achieved with the CNT length of 12 μm and interfacial shear strength of 8 MPa. Generally, the highest ranges of the CNT length, interphase thickness, interphase modulus and interfacial shear strength lead to the most desirable mechanical features.


Sign in / Sign up

Export Citation Format

Share Document