scholarly journals Direct Kerr frequency comb atomic spectroscopy and stabilization

2020 ◽  
Vol 6 (9) ◽  
pp. eaax6230 ◽  
Author(s):  
Liron Stern ◽  
Jordan R. Stone ◽  
Songbai Kang ◽  
Daniel C. Cole ◽  
Myoung-Gyun Suh ◽  
...  

Microresonator-based soliton frequency combs, microcombs, have recently emerged to offer low-noise, photonic-chip sources for applications, spanning from timekeeping to optical-frequency synthesis and ranging. Broad optical bandwidth, brightness, coherence, and frequency stability have made frequency combs important to directly probe atoms and molecules, especially in trace gas detection, multiphoton light-atom interactions, and spectroscopy in the extreme ultraviolet. Here, we explore direct microcomb atomic spectroscopy, using a cascaded, two-photon 1529-nm atomic transition in a rubidium micromachined cell. Fine and simultaneous repetition rate and carrier-envelope offset frequency control of the soliton enables direct sub-Doppler and hyperfine spectroscopy. Moreover, the entire set of microcomb modes are stabilized to this atomic transition, yielding absolute optical-frequency fluctuations at the kilohertz level over a few seconds and <1-MHz day-to-day accuracy. Our work demonstrates direct atomic spectroscopy with Kerr microcombs and provides an atomic-stabilized microcomb laser source, operating across the telecom band for sensing, dimensional metrology, and communication.

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Abhinav Kumar Vinod ◽  
Shu-Wei Huang ◽  
Jinghui Yang ◽  
Mingbin Yu ◽  
Dim-Lee Kwong ◽  
...  

AbstractOptical frequency comb technology has been the cornerstone for scientific breakthroughs in precision metrology. In particular, the unique phase-coherent link between microwave and optical frequencies solves the long-standing puzzle of precision optical frequency synthesis. While the current bulk mode-locked laser frequency comb has had great success in extending the scientific frontier, its use in real-world applications beyond the laboratory setting remains an unsolved challenge due to the relatively large size, weight and power consumption. Recently microresonator-based frequency combs have emerged as a candidate solution with chip-scale implementation and scalability. The wider-system precision control and stabilization approaches for frequency microcombs, however, requires external nonlinear processes and multiple peripherals which constrain their application space. Here we demonstrate an internal phase-stabilized frequency microcomb that does not require nonlinear second-third harmonic generation nor optical external frequency references. We demonstrate that the optical frequency can be stabilized by control of two internally accessible parameters: an intrinsic comb offset ξ and the comb spacing frep. Both parameters are phase-locked to microwave references, with phase noise residuals of 55 and 20 mrad respectively, and the resulting comb-to-comb optical frequency uncertainty is 80 mHz or less. Out-of-loop measurements confirm good coherence and stability across the comb, with measured optical frequency instability of 2 × 10−11 at 20-second gate time. Our measurements are supported by analytical theory including the cavity-induced modulation instability. We further describe an application of our technique in the generation of low noise microwaves and demonstrate noise suppression of the repetition rate below the microwave stabilization limit achieved.


2020 ◽  
Vol 6 (39) ◽  
pp. eaba2807 ◽  
Author(s):  
Wenle Weng ◽  
Aleksandra Kaszubowska-Anandarajah ◽  
Junqiu Liu ◽  
Prince M. Anandarajah ◽  
Tobias J. Kippenberg

With optical spectral marks equally spaced by a frequency in the microwave or the radio frequency domain, optical frequency combs have been used not only to synthesize optical frequencies from microwave references but also to generate ultralow-noise microwaves via optical frequency division. Here, we combine two compact frequency combs, namely, a soliton microcomb and a semiconductor gain-switched comb, to demonstrate low-noise microwave generation based on a novel frequency division technique. Using a semiconductor laser that is driven by a sinusoidal current and injection-locked to microresonator solitons, our scheme transfers the spectral purity of a dissipative soliton oscillator into the subharmonic frequencies of the microcomb repetition rate. In addition, the gain-switched comb provides dense optical spectral emissions that divide the line spacing of the soliton microcomb. With the potential to be fully integrated, the merger of the two chipscale devices may profoundly facilitate the wide application of frequency comb technology.


2021 ◽  
Vol 11 (15) ◽  
pp. 7122
Author(s):  
Simona Mosca ◽  
Tobias Hansson ◽  
Maria Parisi

Optical frequency comb synthesizers with a wide spectral range are an essential tool for many research areas such as spectroscopy, precision metrology, optical communication, and sensing. Recent studies have demonstrated the direct generation of frequency combs, via second-order processes, that are centered on two different spectral regions separated by an octave. Here, we present the capability of optical quadratic frequency combs for broad-bandwidth spectral emission in unexplored regimes. We consider comb formation under phase-matched conditions in a continuous-wave pumped singly resonant second-harmonic cavity, with large intracavity power and control of the detuning over several cavity line widths. The spectral analysis reveals quite distinctive sidebands that arise far away from the pump, singularly or in a mixed regime together with narrowband frequency combs. Notably, by increasing the input power, the optical frequency lines evolve into widely spaced frequency clusters, and at maximum power, they appear in a wavelength range spanning up to 100 nm. The obtained results demonstrate the power of second-order nonlinearities for direct comb production within a wide range of pump wavelengths.


Sensors ◽  
2020 ◽  
Vol 20 (5) ◽  
pp. 1248
Author(s):  
Ruitao Yang ◽  
Haisu Lv ◽  
Jing Luo ◽  
Pengcheng Hu ◽  
Hongxing Yang ◽  
...  

A simple and robust analog feedforward and digital feedback compound control system is presented to lock the frequency of a slave continuous wave (CW) laser to an optical frequency comb. The beat frequency between CW laser and the adjacent comb mode was fed to an acousto-optical frequency shifter (AOFS) to compensate the frequency dithering of the CW laser. A digital feedback loop was achieved to expand the operation bandwidth limitation of the AOFS by over an order of magnitude. The signal-to-noise ratio of the interference signal was optimized using a grating-based spectral filtering detection unit. The complete system achieved an ultrastable offset-locking of the slave CW laser to the frequency comb with a relative stability of ±3.62 × 10−14. The Allan deviations of the beat frequency were 8.01 × 10−16 and 2.19 × 10−16 for a gate time of 10 s and 1000 s, respectively. The findings of this study may further improve laser interferometry by providing a simple and robust method for ultrastable frequency control.


2019 ◽  
Vol 11 (5) ◽  
pp. 1-8
Author(s):  
Sebastian Stutz ◽  
Dominik Auth ◽  
Christoph Weber ◽  
Lukas Drzewietzki ◽  
Oleg Nikiforov ◽  
...  

2018 ◽  
Vol 7 (4.15) ◽  
pp. 405
Author(s):  
Yousif I. Hammadi ◽  
Tahreer S. Mansour

In this study, an optical frequency comb source (OFCS) based on a dual-drive Mach–Zehnder modulator (MZM) is constructed and theoretically demonstrated. A mathematical model of the constructed OFCS is then built to investigate the effect of the peak-to-peak radio frequency (RF) signals applied to the MZM arms on the generated optical frequency comb (OFC) lines at the MZM output. A dual-drive MZM, a continuous wave laser source, and an RF signal source are included in the OFCS. The chirp parameter can be controlled and 64 comb lines generated at a comb spacing of 25 GHz by regulating voltages applied to the MZM arms. The developed OFCS is relatively simple but valuable. The generated OFC lines can be used for high data-rate transmission.  


2014 ◽  
Vol 39 (4) ◽  
pp. 785 ◽  
Author(s):  
Xiaopeng Xie ◽  
Tao Sun ◽  
Huanfa Peng ◽  
Cheng Zhang ◽  
Peng Guo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document