scholarly journals Ultrastable Offset-Locking Continuous Wave Laser to a Frequency Comb with a Compound Control Method for Precision Interferometry

Sensors ◽  
2020 ◽  
Vol 20 (5) ◽  
pp. 1248
Author(s):  
Ruitao Yang ◽  
Haisu Lv ◽  
Jing Luo ◽  
Pengcheng Hu ◽  
Hongxing Yang ◽  
...  

A simple and robust analog feedforward and digital feedback compound control system is presented to lock the frequency of a slave continuous wave (CW) laser to an optical frequency comb. The beat frequency between CW laser and the adjacent comb mode was fed to an acousto-optical frequency shifter (AOFS) to compensate the frequency dithering of the CW laser. A digital feedback loop was achieved to expand the operation bandwidth limitation of the AOFS by over an order of magnitude. The signal-to-noise ratio of the interference signal was optimized using a grating-based spectral filtering detection unit. The complete system achieved an ultrastable offset-locking of the slave CW laser to the frequency comb with a relative stability of ±3.62 × 10−14. The Allan deviations of the beat frequency were 8.01 × 10−16 and 2.19 × 10−16 for a gate time of 10 s and 1000 s, respectively. The findings of this study may further improve laser interferometry by providing a simple and robust method for ultrastable frequency control.

2019 ◽  
Vol 11 (5) ◽  
pp. 1-8
Author(s):  
Sebastian Stutz ◽  
Dominik Auth ◽  
Christoph Weber ◽  
Lukas Drzewietzki ◽  
Oleg Nikiforov ◽  
...  

2017 ◽  
Vol 2017 ◽  
pp. 1-5
Author(s):  
Tawfig Eltaif

A cascaded intensity modulator (IM) and phase modulator (PM) are used to modulate a continuous-wave (CW) laser and generate an optical frequency comb (OFC). Thus, the generated comb is utilized as an initial seed and combined with another CW-laser to generate four-wave mixing (FWM) in photonic crystal fiber (PCF). Results show that an initial flat 30 GHz OFC of 29, 55 lines within power fluctuation of 0.8 dB and 2 dB, respectively, can be achieved by setting the ratio of the DC bias to amplitude of sinusoidal signal at 0.1 and setting the modulation indices of both IM and PM at 10. Moreover, the 1st order of FWM created through 14 m of PCF has over 68 and 94 lines with fluctuation of 0.8 dB and 2 dB, respectively. Hence, the generated wavelengths of 1st left and right order of FWM can be tuned in a range from ~1500 nm to ~1525 nm and ~1590 nm to ~1604 nm, respectively.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Mamoru Endo ◽  
Shota Kimura ◽  
Shuntaro Tani ◽  
Yohei Kobayashi

AbstractMulti-gigahertz mechanical vibrations that stem from interactions between light fields and matter—known as acoustic phonons—have long been a subject of research. In recent years, specially designed functional devices have been developed to enhance the strength of the light-matter interactions because excitation of acoustic phonons using a continuous-wave laser alone is insufficient. However, the strength of the interaction cannot be controlled appropriately or instantly using these structurally-dependent enhancements. Here we show a technique to control the effective interaction strength that does not operate via the material structure in the spatial domain; instead, the method operates through the structure of the light in the time domain. The effective excitation and coherent control of acoustic phonons in a single-mode fiber using an optical frequency comb that is performed by tailoring the optical pulse train. This work represents an important step towards comb-matter interactions.


2021 ◽  
Vol 11 (15) ◽  
pp. 7122
Author(s):  
Simona Mosca ◽  
Tobias Hansson ◽  
Maria Parisi

Optical frequency comb synthesizers with a wide spectral range are an essential tool for many research areas such as spectroscopy, precision metrology, optical communication, and sensing. Recent studies have demonstrated the direct generation of frequency combs, via second-order processes, that are centered on two different spectral regions separated by an octave. Here, we present the capability of optical quadratic frequency combs for broad-bandwidth spectral emission in unexplored regimes. We consider comb formation under phase-matched conditions in a continuous-wave pumped singly resonant second-harmonic cavity, with large intracavity power and control of the detuning over several cavity line widths. The spectral analysis reveals quite distinctive sidebands that arise far away from the pump, singularly or in a mixed regime together with narrowband frequency combs. Notably, by increasing the input power, the optical frequency lines evolve into widely spaced frequency clusters, and at maximum power, they appear in a wavelength range spanning up to 100 nm. The obtained results demonstrate the power of second-order nonlinearities for direct comb production within a wide range of pump wavelengths.


2021 ◽  
Author(s):  
Zuomin Yang ◽  
Zijie Lu ◽  
Shiwei Wang ◽  
Hongqi Zhang ◽  
Lu Zhang ◽  
...  

2018 ◽  
Vol 7 (4.15) ◽  
pp. 405
Author(s):  
Yousif I. Hammadi ◽  
Tahreer S. Mansour

In this study, an optical frequency comb source (OFCS) based on a dual-drive Mach–Zehnder modulator (MZM) is constructed and theoretically demonstrated. A mathematical model of the constructed OFCS is then built to investigate the effect of the peak-to-peak radio frequency (RF) signals applied to the MZM arms on the generated optical frequency comb (OFC) lines at the MZM output. A dual-drive MZM, a continuous wave laser source, and an RF signal source are included in the OFCS. The chirp parameter can be controlled and 64 comb lines generated at a comb spacing of 25 GHz by regulating voltages applied to the MZM arms. The developed OFCS is relatively simple but valuable. The generated OFC lines can be used for high data-rate transmission.  


2013 ◽  
Vol 49 (15) ◽  
pp. 944-945
Author(s):  
E. Prior ◽  
Á.R. Criado ◽  
C. Dios ◽  
P. Acedo ◽  
M. Ortsiefer ◽  
...  

2012 ◽  
Vol 20 (14) ◽  
pp. 15286 ◽  
Author(s):  
Haiyun Xia ◽  
Xiankang Dou ◽  
Dongsong Sun ◽  
Zhifeng Shu ◽  
Xianghui Xue ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document