scholarly journals Quartz, mica, and amphibole exsolution from majoritic garnet reveals ultra-deep sediment subduction, Appalachian orogen

2020 ◽  
Vol 6 (11) ◽  
pp. eaay5178
Author(s):  
D. S. Keller ◽  
J. J. Ague

Diamond and coesite are classic indicators of ultrahigh-pressure (UHP; ≥100-kilometer depth) metamorphism, but they readily recrystallize during exhumation. Crystallographically oriented pyroxene and amphibole exsolution lamellae in garnet document decomposed supersilicic UHP majoritic garnet originally stable at diamond-grade conditions, but majoritic precursors have only been quantitatively demonstrated in mafic and ultramafic rocks. Moreover, controversy persists regarding which silicates majoritic garnet breakdown produces. We present a method for reconstructing precursor majoritic garnet chemistry in metasedimentary Appalachian gneisses containing garnets preserving concentric zones of crystallographically oriented lamellae including quartz, amphibole, and sodium phlogopite. We link this to novel quartz-garnet crystallographic orientation data. The results reveal majoritic precursors stable at ≥175-kilometer depth and that quartz and mica may exsolve from garnet. Large UHP terranes in the European Caledonides formed during collision of the paleocontinents Baltica and Laurentia; we demonstrate UHP metamorphism from the microcontinent-continent convergence characterizing the contiguous and coeval Appalachian orogen.


Minerals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 842
Author(s):  
Kouhei Asano ◽  
Katsuyoshi Michibayashi ◽  
Tomohiro Takebayashi

Deformation microstructures of peak metamorphic conditions in ultrahigh-pressure (UHP) metamorphic rocks constrain the rheological behavior of deeply subducted crustal material within a subduction channel. However, studies of such rocks are limited by the overprinting effects of retrograde metamorphism during exhumation. Here, we present the deformation microstructures and crystallographic-preferred orientation data of minerals in UHP rocks from the Dabie–Shan to study the rheological behavior of deeply subducted continental material under UHP conditions. The studied samples preserve deformation microstructures that formed under UHP conditions and can be distinguished into two types: high-strain mafic–ultramafic samples (eclogite and garnet-clinopyroxenite) and low-strain felsic samples (jadeite quartzite). This distinction suggests that felsic rocks are less strained than mafic–ultramafic rocks under UHP conditions. We argue that the phase transition from quartz to coesite in the felsic rocks may explain the microstructural differences between the studied mafic–ultramafic and felsic rock samples. The presence of coesite, which has a higher strength than quartz, may result in an increase in the bulk strength of felsic rocks, leading to strain localization in nearby mafic–ultramafic rocks. The formation of shear zones associated with strain localization under HP/UHP conditions can induce the detachment of subducted crustal material from subducting lithosphere, which is a prerequisite for the exhumation of UHP rocks. These findings suggest that coesite has an important influence on the rheological behavior of crustal material that is subducted to coesite-stable depths.



Geology ◽  
2020 ◽  
Vol 48 (10) ◽  
pp. 947-951
Author(s):  
Joseph P. Gonzalez ◽  
Suzanne L. Baldwin ◽  
Jay B. Thomas ◽  
William O. Nachlas ◽  
Paul G. Fitzgerald

Abstract The Appalachian orogen has long been enigmatic because, compared to other parts of the Paleozoic orogens that formed following the subduction of the Iapetus Ocean, direct evidence for ultrahigh-pressure (UHP) metamorphism has never been found. We report the first discovery of coesite in the Appalachian orogen in a metapelite from the mid-Ordovician (Taconic orogeny) Tillotson Peak Complex in Vermont (USA). Relict coesite occurs within a bimineralic SiO2 inclusion in garnet. In situ elastic barometry and trace-element thermometry allow reconstruction of the garnet growth history during prograde metamorphism. The data are interpreted to indicate garnet nucleation and crystallization during blueschist- to eclogite-facies subduction zone metamorphism, followed by garnet rim growth at UHP conditions of > 28 kbar and > 530 ° C. Results provide the first direct evidence that rocks of the Appalachian orogen underwent UHP metamorphism to depths of > 75 km and warrant future studies that constrain the extent of UHP metamorphism.



2020 ◽  
Author(s):  
Richard Palin

<p>Ultrahigh-pressure (UHP) metamorphism is defined by achieving P–T conditions sufficient to transform quartz to coesite (~26–28 kbar at ~500–900 °C), which occurs at ~90-100 km depth within the Earth under lithostatic conditions. Thus, the occurrence of UHP metamorphism is often taken as being a diagnostic indicator of subduction having operated in the geological record, and hence plate tectonics. Yet, the oldest such coesite-bearing rocks belong to the Pan-African belt in northern Mali, and formed at 620 Ma, although there exist multiple lines of evidence to show that a global network of subduction had been operative on Earth for billions of years beforehand. Why, then, are these key geodynamic indicators missing from the majority of the rock record? Here, I show how secular cooling of the Earth's mantle since the Mesoarchean (c. 3.2 Ga) has affected the exhumation potential of UHP (and HP) eclogite through time due to time-dependent compositional variation of both oceanic and continental crust. Petrological modeling of density changes during metamorphism of Archean, Proterozoic, and Phanerozoic composite continental terranes shows that more mafic Archean crust reaches a point-of-no-return during transport into the mantle at shallower depths than less MgO-rich modern-day crust, regardless of whether this occurs via subduction of stagnant lid-like vertical 'drip' tectonics. Thus, while Alpine- and Himalayan-type (U)HP orogenic eclogites represented by metamorphosed mafic intrusions into continental crust may readily have formed during the Precambrian, they would have lacked the buoyancy required for exhumation and preservation in the geological record.</p>





1984 ◽  
Vol 284 (4-5) ◽  
pp. 290-293 ◽  
Author(s):  
K. C. Misra ◽  
H. Y. McSween




1997 ◽  
Vol 3 (S2) ◽  
pp. 561-562
Author(s):  
S.I. Wright ◽  
D.P. Field

Image analysis techniques coupled with crystallography computer codes have been used to index electron backscatter diffraction patterns (EBSPs). The ability to automatically obtain the crystallographic orientation from EBSPs coupled with computer control of the electron beam (or stage) in a scanning electron microscope (SEM) provides a much more complete description of the spatial distribution of crystallographic orientation in polycrystalline materials than has been previously attainable using conventional metallography techniques. Orientation data obtained using this technique can be used to form images reflecting the spatial arrangement of crystallographic orientation in a microstructure. Such images enable the topological features of a microstructure to be linked with the orientation characteristics. The formation of these images, as well as the data collection technique, is sometimes termed Orientation Imaging Microscopy (OIM). The utility of this technique for exploring the property/structure relationship in polycrystalline material has been demonstrated by numerous researchers. However, as yet, this technique has almost exclusively been applied to single phase materials.



2008 ◽  
Vol 49 (5) ◽  
pp. 885-909 ◽  
Author(s):  
I. Baziotis ◽  
E. Mposkos ◽  
P. D. Asimow


Sign in / Sign up

Export Citation Format

Share Document