Changing exhumation potential of (U)HP eclogite through geological time

Author(s):  
Richard Palin

<p>Ultrahigh-pressure (UHP) metamorphism is defined by achieving P–T conditions sufficient to transform quartz to coesite (~26–28 kbar at ~500–900 °C), which occurs at ~90-100 km depth within the Earth under lithostatic conditions. Thus, the occurrence of UHP metamorphism is often taken as being a diagnostic indicator of subduction having operated in the geological record, and hence plate tectonics. Yet, the oldest such coesite-bearing rocks belong to the Pan-African belt in northern Mali, and formed at 620 Ma, although there exist multiple lines of evidence to show that a global network of subduction had been operative on Earth for billions of years beforehand. Why, then, are these key geodynamic indicators missing from the majority of the rock record? Here, I show how secular cooling of the Earth's mantle since the Mesoarchean (c. 3.2 Ga) has affected the exhumation potential of UHP (and HP) eclogite through time due to time-dependent compositional variation of both oceanic and continental crust. Petrological modeling of density changes during metamorphism of Archean, Proterozoic, and Phanerozoic composite continental terranes shows that more mafic Archean crust reaches a point-of-no-return during transport into the mantle at shallower depths than less MgO-rich modern-day crust, regardless of whether this occurs via subduction of stagnant lid-like vertical 'drip' tectonics. Thus, while Alpine- and Himalayan-type (U)HP orogenic eclogites represented by metamorphosed mafic intrusions into continental crust may readily have formed during the Precambrian, they would have lacked the buoyancy required for exhumation and preservation in the geological record.</p>

2021 ◽  
Author(s):  
Richard Palin ◽  
James Moore ◽  
Zeming Zhang ◽  
Guangyu Huang

Abstract The absence of ultrahigh pressure (UHP) orogenic eclogite in the geological record older than c. 0.6 Ga is problematic for evidence of subduction having begun on Earth during the Archean (4.0–2.5 Ga). Many eclogites in Phanerozoic and Proterozoic terranes occur as mafic boudins encased within low-density felsic crust, which provides positive buoyancy during subduction; however, recent geochemical proxy analysis shows that Archean continental crust was more mafic than previously thought. Here, we show via petrological modelling that secular change in the composition of upper continental crust (UCC) would make Archean continental terranes negatively buoyant in the mantle before reaching UHP conditions. Subducted or delaminated Archean continental crust passes a point of no return during metamorphism in the mantle prior to the stabilization of coesite, while Proterozoic and Phanerozoic terranes remain positively buoyant at these depths. UHP orogenic eclogite may thus readily have formed on the Archean Earth, but could not have been exhumed, weakening arguments for a Neoproterozoic onset of subduction and plate tectonics. Further, isostatic balance calculations for more mafic Archean continents indicate that the early Earth was covered by a global ocean over 1 kilometre deep.


2020 ◽  
Author(s):  
Julien Cornet ◽  
Oscar Laurent ◽  
Jörn-Frederik Wotzlaw ◽  
Juan Otamendi ◽  
Olivier Bachmann

<p>The presence of a thick continental crust makes Earth a unique planet in the solar system. During post-Archaean times, with the onset of plate tectonics, processes by which continents form is a complex function of juvenile growth and recycling of pre-existing crust. Indeed, post-Archean mantle-derived magmas commonly intrude pre-existing, felsic continental crust. As a result, the origin of upper crustal granitoids, the most accessible products of planetary differentiation, is either accounted for by the melting of the pre-existing mid- to lower crust or the differentiation of mantle-derived mafic magmas. It is therefore critical to identify the relative contribution of these two different granite-forming processes in a given magmatic province, as well as how this relative contribution evolves over time, to assess crustal growth and/or recycling. To shed some light on this question, we used the combination of oxygen, hafnium and uranium-lead isotopic systems in zircons from granitoids of the Ordovician Famatinian Arc (Argentina) representing a typical crust-forming geotectonic setting. While the lower crustal section of Valle Fertíl, representing the basal level of the Famatinian crust, is already well studied, little is known on the timing and nature of igneous processes that built up the mid- and upper crust. </p><p>From our study, we observe a systematic co-variation of the O and Hf isotopic signatures of zircon in the mid- to upper crustal rocks, from a clearly crustal footprint (granodiorites with zircon δ<sup>18</sup>O of ca. +8 ‰; εHf<sub>t</sub> of ca. –3) to a mantle-like signature (granites and rhyolites: zircon δ<sup>18</sup>O of ca. +5 ‰; εHf<sub>t</sub> of ca. +5). Moreover, the high-precision (ID-TIMS) U-Pb dating obtained from the same zircons seem to record a progressive building of the Ordovician continental crust lasting for ca. 13Myrs from 483 to 470 Myrs ago. The results overlap with published ID-TIMS U-Pb data for the Famatinian lower crust, clustering at 470 Myrs, which confirms that the Famatinian Arc was a transcrustal magmatic system ultimately fed by mantle-derived magmas. In details, the oldest granitoids (483 Myrs) show the strongest crustal Hf-O isotopic fingerprint while the younger ones define a continuous range from this end-member towards the mantle signature. These results could be explained by (i) continuous ingrowth and “self-shielding” of lower crustal mafic intrusions progressively decreasing crustal melting or contamination of ascending mafic magma from a homogenous mantle source; (ii) progressive defertilization of an enriched lithospheric mantle or a strongly slab-enriched mantle wedge. The fact that the earliest (483 Myr-old) granitoids also show a more significant crustal contribution (ASI >1.1, inherited zircon cores) supports the first scenario. In this case, the combination of Hf-O isotopic studies as well as high precision U-Pb dating for the Famatinian arc comply with a progressive building of a magmatic column where a certain amount of time is needed for the system to mature and eventually reach mantle dominated processes in the formation of granites and so, new continental crust.</p>


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Guozheng Sun ◽  
Shuwen Liu ◽  
Peter A. Cawood ◽  
Ming Tang ◽  
Jeroen van Hunen ◽  
...  

AbstractConstraining thickness and geothermal gradient of Archean continental crust are crucial to understanding geodynamic regimes of the early Earth. Archean crust-sourced tonalitic–trondhjemitic–granodioritic gneisses are ideal lithologies for reconstructing the thermal state of early continental crust. Integrating experimental results with petrochemical data from the Eastern Block of the North China Craton allows us to establish temporal–spatial variations in thickness, geothermal gradient and basal heat flow across the block, which we relate to cooling mantle potential temperature and resultant changing geodynamic regimes from vertical tectonics in the late Mesoarchean (~2.9 Ga) to plate tectonics with hot subduction in the early to late Neoarchean (~2.7–2.5 Ga). Here, we show the transition to a plate tectonic regime plays an important role in the rapid cooling of the mantle, and thickening and strengthening of the lithosphere, which in turn prompted stabilization of the cratonic lithosphere at the end of the Archean.


2021 ◽  
Author(s):  
Douwe J. J. van Hinsbergen ◽  
Bernhard Steinberger ◽  
Carl Guilmette ◽  
Marco Maffione ◽  
Derya Gürer ◽  
...  

<p>The formation of a global network of plate boundaries surrounding a mosaic of lithospheric fragments was a key step in the emergence of Earth’s plate tectonics. So far, propositions for plate boundary formation are regional in nature but how plate boundaries are being created over 1000s of km in short periods of geological time remains elusive. Here, we show from geological observations that a >12,000 km long plate boundary formed between the Indian and African plates around 105 Ma with subduction segments from the eastern Mediterranean region to a newly established India-Africa rotation pole in the west-Indian ocean where it transitioned into a ridge between India and Madagascar. We find no plate tectonics-related potential triggers of this plate rotation and identify coeval mantle plume rise below Madagascar-India as the only viable driver. For this, we provide a proof of concept by torque balance modeling revealing that the Indian and African cratonic keels were important in determining plate rotation and subduction initiation in response to the spreading plume head. Our results show that plumes may provide a non-plate-tectonic mechanism for large plate rotation initiating divergent and convergent plate boundaries far away from the plume head that may even be an underlying cause of the emergence of modern plate tectonics.</p>


2020 ◽  
Author(s):  
Guozheng Sun ◽  
Shuwen Liu ◽  
Peter Cawood ◽  
Ming Tang ◽  
Jeroen van Hunen ◽  
...  

Abstract Constraining the thickness and geothermal gradient of Archean continental crust are crucial to understanding geodynamic regimes of the early Earth. Archean crust-sourced tonalitic–trondhjemitic–granodioritic gneisses are ideal lithologies for reconstructing the thermal state of early continental crust. Integrating experimental results with petrochemical data from the Eastern Block of the North China Craton allows us to establish temporal–spatial variations in thickness, geothermal gradient and basal heat flow across the block, which we relate to cooling mantle potential temperature and resultant geodynamical regime change from plume dominated in the late Mesoarchean (~2.9 Ga) to plate tectonics with hot subduction in the early to late Neoarchean (~2.7–2.5 Ga). The initiation of plate tectonics might have played an important role in the rapid cooling of the mantle, and thickening and strengthening of the lithosphere, which in turn prompted stabilization of the cratonic lithosphere at the end of Archean.


Geology ◽  
2015 ◽  
Vol 43 (5) ◽  
pp. 447-450 ◽  
Author(s):  
Silvio Ferrero ◽  
Bernd Wunder ◽  
Katarzyna Walczak ◽  
Patrick J. O’Brien ◽  
Martin A. Ziemann

2021 ◽  
Author(s):  
junyu Li ◽  
shunyun Cao ◽  
Xuemei Cheng ◽  
Haobo Wang ◽  
Wenxuan Li

<p>Adakite‐like potassic rocks are widespread in post-collisional settings and provide potential insights into deep crustal or crust-mantle interaction processes including asthenosphere upwelling, partial melting, lower crustal flow, thickening and collapse of the overthickened orogen. However, petrogenesis and compositional variation of these adakite‐like potassic rocks and their implications are still controversial. Potassic magmatic rocks are abundant developed in the Jinshajiang–Ailaoshan tectono-magmatic belt that stretches from eastern Tibet over western Yunnan to Vietnam. Integrated studies of structure, geochronology, mineral compositions and geochemistry indicate adakite-like potassic rocks with different deformation are exposed along the Ailaoshan-Red River shear zone. The potassic felsic rocks formed by mixing and partial melting between enriched mantle-derived ultrapotassic and thickened ancient crust-derived magmas. The mixing of the mafic and felsic melts and their extended fractional crystallization of plagioclase, K-feldspar, hornblende and biotite gave rise to the potassic magmatic rocks. Zircon geochronology provide chronological markers for emplacement at 35–37 Ma of these adakite-like potassic rocks along the shear zone. Temperature and pressure calculated by amphibole-plagioclase thermobarometry range from 3.5 to 5.9 kbar and 650 to 750 ℃, respectively, and average emplacement depths of ca. 18 km for granodiorite within this suite. In combination with the results of the Cenozoic potassic magmatism in the Jinshajiang–Ailaoshan tectono-magmatic belt, we suggest that in addition to partial melting of the thickened ancient continental crust, magma underplating and subsequent crust-mantle mixing beneath the ancient continental crust have also played an important role in crustal reworking and strongly affected the rheological properties and density of rocks. The exhumation underlines the role of lateral motion of the Ailaoshan-Red River shear zone initiation by potassic magma-assisted rheological weakening and exhumation at high ambient temperatures within the shear zone.</p>


2000 ◽  
Vol 105 (B6) ◽  
pp. 13303-13338 ◽  
Author(s):  
Lothar Ratschbacher ◽  
Bradley R. Hacker ◽  
Laura E. Webb ◽  
Michael McWilliams ◽  
Trevor Ireland ◽  
...  

2000 ◽  
Vol 105 (B6) ◽  
pp. 13339-13364 ◽  
Author(s):  
Bradley R. Hacker ◽  
Lothar Ratschbacher ◽  
Laura Webb ◽  
Michael O. McWilliams ◽  
Trevor Ireland ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document