scholarly journals Single-cell transcriptome analysis reveals cell lineage specification in temporal-spatial patterns in human cortical development

2020 ◽  
Vol 6 (34) ◽  
pp. eaaz2978 ◽  
Author(s):  
Xiaoying Fan ◽  
Yuanyuan Fu ◽  
Xin Zhou ◽  
Le Sun ◽  
Ming Yang ◽  
...  

Neurogenesis processes differ in different areas of the cortex in many species, including humans. Here, we performed single-cell transcriptome profiling of the four cortical lobes and pons during human embryonic and fetal development. We identified distinct subtypes of neural progenitor cells (NPCs) and their molecular signatures, including a group of previously unidentified transient NPCs. We specified the neurogenesis path and molecular regulations of the human deep-layer, upper-layer, and mature neurons. Neurons showed clear spatial and temporal distinctions, while glial cells of different origins showed development patterns similar to those of mice, and we captured the developmental trajectory of oligodendrocyte lineage cells until the human mid-fetal stage. Additionally, we verified region-specific characteristics of neurons in the cortex, including their distinct electrophysiological features. With systematic single-cell analysis, we decoded human neuronal development in temporal and spatial dimensions from GW7 to GW28, offering deeper insights into the molecular regulations underlying human neurogenesis and cortical development.

eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Ying Zhu ◽  
Mirko Scheibinger ◽  
Daniel Christian Ellwanger ◽  
Jocelyn F Krey ◽  
Dongseok Choi ◽  
...  

Hearing and balance rely on small sensory hair cells that reside in the inner ear. To explore dynamic changes in the abundant proteins present in differentiating hair cells, we used nanoliter-scale shotgun mass spectrometry of single cells, each ~1 picoliter, from utricles of embryonic day 15 chickens. We identified unique constellations of proteins or protein groups from presumptive hair cells and from progenitor cells. The single-cell proteomes enabled the de novo reconstruction of a developmental trajectory using protein expression levels, revealing proteins that greatly increased in expression during differentiation of hair cells (e.g., OCM, CRABP1, GPX2, AK1, GSTO1) and those that decreased during differentiation (e.g., TMSB4X, AGR3). Complementary single-cell transcriptome profiling showed corresponding changes in mRNA during maturation of hair cells. Single-cell proteomics data thus can be mined to reveal features of cellular development that may be missed with transcriptomics.


Cell Reports ◽  
2019 ◽  
Vol 27 (7) ◽  
pp. 2241-2247.e4 ◽  
Author(s):  
Christine N. Shulse ◽  
Benjamin J. Cole ◽  
Doina Ciobanu ◽  
Junyan Lin ◽  
Yuko Yoshinaga ◽  
...  

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Bumsik Cho ◽  
Sang-Ho Yoon ◽  
Daewon Lee ◽  
Ferdinand Koranteng ◽  
Sudhir Gopal Tattikota ◽  
...  

Abstract The Drosophila lymph gland, the larval hematopoietic organ comprised of prohemocytes and mature hemocytes, has been a valuable model for understanding mechanisms underlying hematopoiesis and immunity. Three types of mature hemocytes have been characterized in the lymph gland: plasmatocytes, lamellocytes, and crystal cells, which are analogous to vertebrate myeloid cells, yet molecular underpinnings of the lymph gland hemocytes have been less investigated. Here, we use single-cell RNA sequencing to comprehensively analyze heterogeneity of developing hemocytes in the lymph gland, and discover previously undescribed hemocyte types including adipohemocytes, stem-like prohemocytes, and intermediate prohemocytes. Additionally, we identify the developmental trajectory of hemocytes during normal development as well as the emergence of the lamellocyte lineage following active cellular immunity caused by wasp infestation. Finally, we establish similarities and differences between embryonically derived- and larval lymph gland hemocytes. Altogether, our study provides detailed insights into the hemocyte development and cellular immune responses at single-cell resolution.


2017 ◽  
Vol 525 (12) ◽  
pp. 2735-2781 ◽  
Author(s):  
Lauren A. Laboissonniere ◽  
Gregory M. Martin ◽  
Jillian J. Goetz ◽  
Ran Bi ◽  
Brock Pope ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document