scholarly journals Evaluating the impact of long-term exposure to fine particulate matter on mortality among the elderly

2020 ◽  
Vol 6 (29) ◽  
pp. eaba5692 ◽  
Author(s):  
X. Wu ◽  
D. Braun ◽  
J. Schwartz ◽  
M. A. Kioumourtzoglou ◽  
F. Dominici

Many studies link long-term fine particle (PM2.5) exposure to mortality, even at levels below current U.S. air quality standards (12 micrograms per cubic meter). These findings have been disputed with claims that the use of traditional statistical approaches does not guarantee causality. Leveraging 16 years of data—68.5 million Medicare enrollees—we provide strong evidence of the causal link between long-term PM2.5 exposure and mortality under a set of causal inference assumptions. Using five distinct approaches, we found that a decrease in PM2.5 (by 10 micrograms per cubic meter) leads to a statistically significant 6 to 7% decrease in mortality risk. Based on these models, lowering the air quality standard to 10 micrograms per cubic meter would save 143,257 lives (95% confidence interval, 115,581 to 170,645) in one decade. Our study provides the most comprehensive evidence to date of the link between long-term PM2.5 exposure and mortality, even at levels below current standards.

2020 ◽  
Vol 189 (6) ◽  
pp. 602-612 ◽  
Author(s):  
Jinjun Ran ◽  
Aimin Yang ◽  
Shengzhi Sun ◽  
Lefei Han ◽  
Jinhui Li ◽  
...  

Abstract Numerous studies have indicated that ambient particulate matter is closely associated with increased risk of cardiovascular disease, yet the evidence for its association with renal disease remains underrecognized. We aimed to estimate the association between long-term exposure to fine particulate matter, defined as particulate matter with an aerodynamic diameter less than or equal to 2.5 μm (PM2.5), and mortality from renal failure (RF) among participants in the Elderly Health Service Cohort in Hong Kong, China, from 1998 to 2010. PM2.5 concentration at the residential address of each participant was estimated based on a satellite-based spatiotemporal model. We used Cox proportional hazards regression to estimate risks of overall RF and cause-specific mortality associated with PM2.5. After excluding 5,373 subjects without information on residential address or relevant covariates, we included 61,447 participants in data analyses. We identified 443 RF deaths during the 10 years of follow-up. For an interquartile-range increase in PM2.5 concentration (3.22 μg/m3), hazard ratios for RF mortality were 1.23 (95% confidence interval: 1.06, 1.43) among all cohort participants and 1.42 (95% confidence interval: 1.16, 1.74) among patients with chronic kidney disease. Long-term exposure to atmospheric PM2.5 might be an important risk factor for RF mortality in the elderly, especially among persons with existing renal diseases.


Author(s):  
Ivan C. Hanigan ◽  
Richard A. Broome ◽  
Timothy B. Chaston ◽  
Martin Cope ◽  
Martine Dennekamp ◽  
...  

Ambient fine particulate matter <2.5 µm (PM2.5) air pollution increases premature mortality globally. Some PM2.5 is natural, but anthropogenic PM2.5 is comparatively avoidable. We determined the impact of long-term exposures to the anthropogenic PM component on mortality in Australia. PM2.5-attributable deaths were calculated for all Australian Statistical Area 2 (SA2; n = 2310) regions. All-cause death rates from Australian mortality and population databases were combined with annual anthropogenic PM2.5 exposures for the years 2006–2016. Relative risk estimates were derived from the literature. Population-weighted average PM2.5 concentrations were estimated in each SA2 using a satellite and land use regression model for Australia. PM2.5-attributable mortality was calculated using a health-impact assessment methodology with life tables and all-cause death rates. The changes in life expectancy (LE) from birth, years of life lost (YLL), and economic cost of lost life years were calculated using the 2019 value of a statistical life. Nationally, long-term population-weighted average total and anthropogenic PM2.5 concentrations were 6.5 µg/m3 (min 1.2–max 14.2) and 3.2 µg/m3 (min 0–max 9.5), respectively. Annually, anthropogenic PM2.5-pollution is associated with 2616 (95% confidence intervals 1712, 3455) deaths, corresponding to a 0.2-year (95% CI 0.14, 0.28) reduction in LE for children aged 0–4 years, 38,962 (95%CI 25,391, 51,669) YLL and an average annual economic burden of $6.2 billion (95%CI $4.0 billion, $8.1 billion). We conclude that the anthropogenic PM2.5-related costs of mortality in Australia are higher than community standards should allow, and reductions in emissions are recommended to achieve avoidable mortality.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
X. Wu ◽  
D. Braun ◽  
J. Schwartz ◽  
M. Kioumourtzoglou ◽  
F. Dominici

2018 ◽  
Vol 161 ◽  
pp. 364-369 ◽  
Author(s):  
Anne E. Corrigan ◽  
Michelle M. Becker ◽  
Lucas M. Neas ◽  
Wayne E. Cascio ◽  
Ana G. Rappold

Author(s):  
Mei Zheng ◽  
Caiqing Yan ◽  
Tong Zhu

Fine particulate matter has been a major concern in China as it is closely linked to issues such as haze, health and climate impacts. Since China released its new national air quality standard for fine particulate matter (PM 2.5 ) in 2012, great efforts have been put into reducing its concentration and meeting the standard. Significant improvement has been seen in recent years, especially in Beijing, the capital city of China. This paper reviews how China understands its sources of fine particulate matter, the major contributor to haze, and the most recent findings by researchers. It covers the characteristics of PM 2.5 in China, the major methods to understand its sources such as emission inventory and measurement networks, the major research programmes in air quality research, and the major measures that lead to successful control of fine particulate matter pollution. A great example of linking scientific findings to policy is the control of coal combustion from the residential sector in northern China. This review not only provides an overview of the fine particulate matter pollution problem in China, but also its experience of air quality management, which may benefit other countries facing similar issues. This article is part of a discussion meeting issue ‘Air quality, past present and future’.


2019 ◽  
pp. tobaccocontrol-2018-054895 ◽  
Author(s):  
Sean Semple ◽  
Ruaraidh Dobson ◽  
Helen Sweeting ◽  
Ashley Brown ◽  
Kate Hunt

ObjectiveTo determine secondhand smoke (SHS) concentrations in prisons during the week of implementation of a new, national prisons smoke-free policy.DesignRepeated measurement of SHS concentrations immediately before and after implementation of smoke-free policies across all 15 prisons in Scotland, and comparison with previously gathered baseline data from 2016.MethodsFine particulate matter (PM2.5) measurements at a fixed location over a continuous 6-day period were undertaken at the same site in each prison as previously carried out in 2016. Outdoor air quality data from the nearest local authority measurement station were acquired to determine the contribution of outdoor air pollution to indoor prison measurement of PM2.5.ResultsAir quality improved in all prisons comparing 2016 data with the first full working day postimplementation (overall median reduction −81%, IQR −76% to −91%). Postimplementation indoor PM2.5 concentrations were broadly comparable with outdoor concentrations suggesting minimal smoking activity during the period of measurement.ConclusionsThis is the first evaluation of changes in SHS concentrations across all prisons within a country that has introduced nationwide prohibition of smoking in prisons. All prisons demonstrated immediate substantial reductions in PM2.5 following policy implementation. A smoke-free prisons policy reduces the exposure of prison staff and prisoners to SHS.


Sign in / Sign up

Export Citation Format

Share Document