scholarly journals Grain polydispersity and coherent crystal reorientations are features to foster stress hotspots in polycrystalline alloys under load

2021 ◽  
Vol 7 (15) ◽  
pp. eabe3890
Author(s):  
Juan D. Ospina-Correa ◽  
Daniel A. Olaya-Muñoz ◽  
Juan J. Toro-Castrillón ◽  
Alejandro Toro ◽  
Abelardo Ramírez-Hernández ◽  
...  

The mechanical properties of metallic alloys are controlled through the design of their polycrystalline structure via heat treatments. For single-phase microstructures, they aim to achieve a particular average grain diameter to leverage stress hardening or softening. The stochastic nature of the recrystallization process generates a grain size distribution, and the randomness of the crystallographic orientation determines the anisotropy of a mechanical response. We developed a multiscale computational formalism to capture the collective mechanical response of polycrystalline microstructures at unprecedented length scales. We found that for an averaged grain size, the mechanical response is highly dependent on the grain size distribution. The simulations reveal the topological conditions that promote coherent grain texturization and grain growth inhibition during stress relaxation. We identify the microstructural features that are responsible for the appearance of stress hotspots. Our results provide the elusive evidence of how stress hotspots are ideal precursors for plastic and creep failure.

2011 ◽  
Vol 19 (2) ◽  
pp. 91 ◽  
Author(s):  
Guoquan Liu ◽  
Haibo Yu

The conventional serial sectioning analysis and a set of modern stereological methods, including disector, selector, point-sampled intercepts, point-sampled area, and their combinations, have been used in this paper to measure the grain size, grain size distribution, topological parameters and their distributions in a spacefilling single-phase grain structure of steel. The results from different methods are compared and used to evaluate the methods quantitatively, based on which some suggestions will be given for selection of experimental methods in materials stereology research.


2020 ◽  
Vol 86 (4) ◽  
pp. 39-45
Author(s):  
S. I. Arkhangelskiy ◽  
D. M. Levin

A statistical analysis of the grain size distribution is important both for developing theories of the grain growth and microstructure formation, and for describing the size dependences of various characteristics of the physical and mechanical properties of polycrystalline materials. The grain size distribution is also an important characteristic of the structure uniformity and, therefore, stability of the properties of the products during operation. Statistical Monte Carlo modeling of single-phase and equiaxed polycrystalline microstructures was carried out to determine the type of statistically valid distribution function and reliable estimates of the average grain size. Statistical parameters (mean values, variances, variation coefficient) and distribution functions of the characteristics of the grain microstructure were obtained. It is shown that the distribution function of the effective grain sizes for the studied polycrystal model is most adequately described by γ-distribution, which is recommended to be used in analysis of the experimental distribution functions of grain sizes of single-phase polycrystalline materials with equiaxed grains. The general average (mathematical expectation) of the effective grain size (projection diameter) with γ-distribution function (parameters of the distribution function are to be previously determined in analysis of the grain structure of polycrystalline materials) should be taken as a statistically valid and reliable estimate of the average grain size. The results of statistical modeling are proved by the experimental data of metallographic study of the microstructures of single-phase model and industrial materials with different degree of the grain structure heterogeneity.


2006 ◽  
Vol 54 (12) ◽  
pp. 3307-3320 ◽  
Author(s):  
B ZHU ◽  
R ASARO ◽  
P KRYSL ◽  
K ZHANG ◽  
J WEERTMAN

2011 ◽  
Vol 682 ◽  
pp. 153-158
Author(s):  
Ying Guang Liu ◽  
Jian Qiu Zhou

A theoretical model based on self-consistent approximation is proposed to explore the effect of grain size distribution on the local mechanical response of nanocrystalline (nc) materials. The representative volume element (RVE) is composed of grains randomly distributed with a grain size distribution following a log-normal statistical function. The grain interior and grain boundary are taken as an integral object to sustain deformation mechanisms of grain-boundary sliding, grain-boundary diffusion and grain-interior plasticity. Local plastic strains and internal stresses, developing within the RVE, have been recorded and discussed.


Sign in / Sign up

Export Citation Format

Share Document