scholarly journals Sea level and deep-sea temperature reconstructions suggest quasi-stable states and critical transitions over the past 40 million years

2021 ◽  
Vol 7 (26) ◽  
pp. eabf5326
Author(s):  
Eelco J. Rohling ◽  
Jimin Yu ◽  
David Heslop ◽  
Gavin L. Foster ◽  
Bradley Opdyke ◽  
...  

Sea level and deep-sea temperature variations are key indicators of global climate changes. For continuous records over millions of years, deep-sea carbonate microfossil–based δ18O (δc) records are indispensable because they reflect changes in both deep-sea temperature and seawater δ18O (δw); the latter are related to ice volume and, thus, to sea level changes. Deep-sea temperature is usually resolved using elemental ratios in the same benthic microfossil shells used for δc, with linear scaling of residual δw to sea level changes. Uncertainties are large and the linear-scaling assumption remains untested. Here, we present a new process-based approach to assess relationships between changes in sea level, mean ice sheet δ18O, and both deep-sea δw and temperature and find distinct nonlinearity between sea level and δw changes. Application to δc records over the past 40 million years suggests that Earth’s climate system has complex dynamical behavior, with threshold-like adjustments (critical transitions) that separate quasi-stable deep-sea temperature and ice-volume states.

Nature ◽  
2014 ◽  
Vol 510 (7505) ◽  
pp. 432-432 ◽  
Author(s):  
E. J. Rohling ◽  
G. L. Foster ◽  
K. M. Grant ◽  
G. Marino ◽  
A. P. Roberts ◽  
...  

Nature ◽  
2014 ◽  
Vol 508 (7497) ◽  
pp. 477-482 ◽  
Author(s):  
E. J. Rohling ◽  
G. L. Foster ◽  
K. M. Grant ◽  
G. Marino ◽  
A. P. Roberts ◽  
...  

2007 ◽  
Vol 46 ◽  
pp. 69-77 ◽  
Author(s):  
C.I. Van Tuyll ◽  
R.S.W. Van De Wal ◽  
J. Oerlemans

AbstractAn ice-flow model is used to simulate the Antarctic ice-sheet volume and deep-sea temperature record during Cenozoic times. We used a vertically integrated axisymmetric ice-sheet model, including bedrock adjustment. In order to overcome strong numerical hysteresis effects during climate change, the model is solved on a stretching grid. The Cenozoic reconstruction of the Antarctic ice sheet is accomplished by splitting the global oxygen isotope record derived from benthic foraminifera into an ice-volume and a deep-sea temperature component. The model is tuned to reconstruct the initiation of a large ice sheet of continental size at 34 Ma. The resulting ice volume curve shows that small ice caps (<107 km3) could have existed during Paleocene and Eocene times. Fluctuations during the Miocene are large, indicating a retreat back from the coast and a vanishing ice flux across the grounding line, but with ice volumes still up to 60% of the present-day volume. The resulting deep-sea temperature curve shows similarities with the paleotemperature curve derived from Mg/Ca in benthic calcite from 25 Ma till the present, which supports the idea that the ice volume is well reproduced for this period. Before 34 Ma, the reproduced deep-sea temperature is slightly higher than is generally assumed. Global sea-level change turns out to be of minor importance when considering the Cenozoic evolution of the ice sheet until 5 Ma.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Yusuke Yokoyama ◽  
Anthony Purcell

AbstractPast sea-level change represents the large-scale state of global climate, reflecting the waxing and waning of global ice sheets and the corresponding effect on ocean volume. Recent developments in sampling and analytical methods enable us to more precisely reconstruct past sea-level changes using geological indicators dated by radiometric methods. However, ice-volume changes alone cannot wholly account for these observations of local, relative sea-level change because of various geophysical factors including glacio-hydro-isostatic adjustments (GIA). The mechanisms behind GIA cannot be ignored when reconstructing global ice volume, yet they remain poorly understood within the general sea-level community. In this paper, various geophysical factors affecting sea-level observations are discussed and the details and impacts of these processes on estimates of past ice volumes are introduced.


Clay Minerals ◽  
1993 ◽  
Vol 28 (1) ◽  
pp. 61-84 ◽  
Author(s):  
M. Thiry ◽  
T. Jacquin

AbstractThe distribution of clay minerals from the N and S Atlantic Cretaceous deep-sea sediments is related to rifting, sea-floor spreading, sea-level variations and paleoceanography. Four main clay mineral suites were identified: two are inherited and indicative of ocean geodynamics, whereas the others result from transformation and authigenesis and are diagnostic of Cretaceous oceanic depositional environments. Illite and chlorite, together with interstratified illite-smectite and smectite occur above the sea-floor basalts and illustrate the contribution of volcanoclastic materials of basaltic origin to the sediments. Kaolinite, with variable amounts of illite, chlorite, smectite and interstratified minerals, indicates detrital inputs from continents near the platform margins. Kaolinite decreases upward in the series due to open marine environments and basin deepening. It may increase in volume during specific time intervals corresponding to periods of falling sea-level during which overall facies regression and erosion of the surrounding platforms occurred. Smectite is the most abundant clay mineral in the Cretaceous deep-sea sediments. Smectite-rich deposits correlate with periods of relatively low sedimentation rates. As paleoweathering profiles and basal deposits at the bottom of Cretaceous transgressive formations are mostly kaolinitic, smectite cannot have been inherited from the continents. Smectite is therefore believed to have formed in the ocean by transformation and recrystallization of detrital materials during early diagenesis. Because of the slow rate of silicate reactions, transformation of clay minerals requires a long residence time of the particles at the water/sediment interface; this explains the relationships between the observed increases in smectite with long-term sea-level rises that tend to starve the basinal settings of sedimentation. Palygorskite, along with dolomite, is relatively common in the N and S Atlantic Cretaceous sediments. It is not detrital because correlative shelf deposits are devoid of palygorskite. Palygorskite is diagnostic of Mg-rich environments and is indicative of the warm and hypersaline bottom waters of the Cretaceous Atlantic ocean.


2022 ◽  
pp. 169-170
Author(s):  
Natalia Vázquez-Riveiros ◽  
Samuel Toucanne ◽  
Filipa Naughton ◽  
Teresa Rodrigues ◽  
María Fernanda Sánchez Goñi

Author(s):  
Thomas S. Bianchi

Geologically speaking, estuaries are ephemeral features of the coasts. Upon formation, most begin to fill in with sediments and, in the absence of sea level changes, would have life spans of only a few thousand to tens of thousands of years (Emery and Uchupi, 1972; Schubel, 1972; Schubel and Hirschberg, 1978). Estuaries have been part of the geologic record for at least the past 200 million years (My) BP (before present; Williams, 1960; Clauzon, 1973). However, modern estuaries are recent features that only formed over the past 5000 to 6000 years during the stable interglacial period of the middle to late Holocene epoch (0–10,000 y BP), which followed an extensive rise in sea level at the end of the Pleistocene epoch (1.8 My to 10,000 y BP; Nichols and Biggs, 1985). There is general agreement that four major glaciation to interglacial periods occurred during the Pleistocene. It has been suggested that sea level was reduced from a maximum of about 80 m above sea level during the Aftoninan interglacial to 100 m below sea level during the Wisconsin, some 15,000 to 18,000 y BP (figure 2.1; Fairbridge, 1961). This lowest sea level phase is referred to as low stand and is usually determined by uncovering the oldest drowned shorelines along continental margins (Davis, 1985, 1996); conversely, the highest sea level phase is referred to as high stand. It is generally accepted that low-stand depth is between 130 and 150 m below present sea level and that sea level rose at a fairly constant rate until about 6000 to 7000 y BP (Belknap and Kraft, 1977). A sea level rise of approximately 10 mm y−1 during this period resulted in many coastal plains being inundated with water and a displacement of the shoreline. The phenomenon of rising (transgression) and falling (regression) sea level over time is referred to as eustacy (Suess, 1906). When examining a simplified sea level curve, we find that the rate of change during the Holocene is fairly representative of the Gulf of Mexico and much of the U.S. Atlantic coastline (Curray, 1965).


1999 ◽  
Vol 52 (3) ◽  
pp. 350-359 ◽  
Author(s):  
W.Roland Gehrels

A relative sea-level history is reconstructed for Machiasport, Maine, spanning the past 6000 calendar year and combining two different methods. The first method establishes the long-term (103 yr) trend of sea-level rise by dating the base of the Holocene saltmarsh peat overlying a Pleistocene substrate. The second method uses detailed analyses of the foraminiferal stratigraphy of two saltmarsh peat cores to quantify fluctuations superimposed on the long-term trend. The indicative meaning of the peat (the height at which the peat was deposited relative to mean tide level) is calculated by a transfer function based on vertical distributions of modern foraminiferal assemblages. The chronology is determined from AMS 14C dates on saltmarsh plant fragments embedded in the peat. The combination of the two different approaches produces a high-resolution, replicable sea-level record, which takes into account the autocompaction of the peat sequence. Long-term mean rates of sea-level rise, corrected for changes in tidal range, are 0.75 mm/yr between 6000 and 1500 cal yr B.P. and 0.43 mm/yr during the past 1500 year. The foraminiferal stratigraphy reveals several low-amplitude fluctuations during a relatively stable period between 1100 and 400 cal yr B.P., and a sea-level rise of 0.5 m during the past 300 year.


Sign in / Sign up

Export Citation Format

Share Document