Reworked Neritic Fossils in Upper Mesozoic and Cenozoic Central Pacific Deep-Sea Sediments Monitor Sea-Level Changes

Science ◽  
1981 ◽  
Vol 211 (4489) ◽  
pp. 1422-1424 ◽  
Author(s):  
J. THIEDE
Clay Minerals ◽  
1993 ◽  
Vol 28 (1) ◽  
pp. 61-84 ◽  
Author(s):  
M. Thiry ◽  
T. Jacquin

AbstractThe distribution of clay minerals from the N and S Atlantic Cretaceous deep-sea sediments is related to rifting, sea-floor spreading, sea-level variations and paleoceanography. Four main clay mineral suites were identified: two are inherited and indicative of ocean geodynamics, whereas the others result from transformation and authigenesis and are diagnostic of Cretaceous oceanic depositional environments. Illite and chlorite, together with interstratified illite-smectite and smectite occur above the sea-floor basalts and illustrate the contribution of volcanoclastic materials of basaltic origin to the sediments. Kaolinite, with variable amounts of illite, chlorite, smectite and interstratified minerals, indicates detrital inputs from continents near the platform margins. Kaolinite decreases upward in the series due to open marine environments and basin deepening. It may increase in volume during specific time intervals corresponding to periods of falling sea-level during which overall facies regression and erosion of the surrounding platforms occurred. Smectite is the most abundant clay mineral in the Cretaceous deep-sea sediments. Smectite-rich deposits correlate with periods of relatively low sedimentation rates. As paleoweathering profiles and basal deposits at the bottom of Cretaceous transgressive formations are mostly kaolinitic, smectite cannot have been inherited from the continents. Smectite is therefore believed to have formed in the ocean by transformation and recrystallization of detrital materials during early diagenesis. Because of the slow rate of silicate reactions, transformation of clay minerals requires a long residence time of the particles at the water/sediment interface; this explains the relationships between the observed increases in smectite with long-term sea-level rises that tend to starve the basinal settings of sedimentation. Palygorskite, along with dolomite, is relatively common in the N and S Atlantic Cretaceous sediments. It is not detrital because correlative shelf deposits are devoid of palygorskite. Palygorskite is diagnostic of Mg-rich environments and is indicative of the warm and hypersaline bottom waters of the Cretaceous Atlantic ocean.


Nature ◽  
1981 ◽  
Vol 289 (5799) ◽  
pp. 667-670 ◽  
Author(s):  
Jörn Thiede

Archaea ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Franziska Wemheuer ◽  
Avril Jean Elisabeth von Hoyningen-Huene ◽  
Marion Pohlner ◽  
Julius Degenhardt ◽  
Bert Engelen ◽  
...  

Information on environmental conditions shaping archaeal communities thriving at the seafloor of the central Pacific Ocean is limited. The present study was conducted to investigate the diversity, composition, and function of both entire and potentially active archaeal communities within Pacific deep-sea sediments. For this purpose, sediment samples were taken along the 180° meridian of the central Pacific Ocean. Community composition and diversity were assessed by Illumina tag sequencing targeting archaeal 16S rRNA genes and transcripts. Archaeal communities were dominated by CandidatusNitrosopumilus(Thaumarchaeota) and other members of theNitrosopumilaceae(Thaumarchaeota), but higher relative abundances of the Marine Group II (Euryarchaeota) were observed in the active compared to the entire archaeal community. The composition of the entire and the active archaeal communities was strongly linked to primary production (chlorophyll content), explaining more than 40% of the variance. Furthermore, we found a strong correlation of the entire archaeal community composition to latitude and silicic acid content, while the active community was significantly correlated with primary production and ferric oxide content. We predicted functional profiles from 16S rRNA data to assess archaeal community functions. Latitude was significantly correlated with functional profiles of the entire community, whereas those of the active community were significantly correlated with nitrate and chlorophyll content. The results of the present study provide first insights into benthic archaeal communities in the Pacific Ocean and environmental conditions shaping their diversity, distribution, and function. Additionally, they might serve as a template for further studies investigating archaea colonizing deep-sea sediments.


Author(s):  
Peter Molnar

‘Seafloor spreading and magnetic anomalies’ begins with the Vine–Matthews Hypothesis, which proposed that strips of seafloor parallel to the mid-ocean ridges, where two plates diverge from one another, were magnetized in opposite directions because the Earth’s field had reversed itself many times. A test of the Vine–Matthews Hypothesis, which required determining the age of the seafloor, became a test of seafloor spreading. Dating the ocean floor using magnetic anomalies detected by magnetometers towed behind ships and core samples extracted during the Deep-Sea Drilling Project confirmed the hypothesis. With magnetic anomalies to date the seafloor and a curve relating seafloor depth and age, the difference between the Atlantic, with its ‘ridge’, and the Pacific and its ‘rise’ became comprehensible. With a theory for predicting the depths of oceans, it was also possible to understand the history of sea-level changes.


1988 ◽  
Vol 29 (2) ◽  
pp. 176-185 ◽  
Author(s):  
Brad Pillans ◽  
Geoff Holgate ◽  
Matt McGlone

Strata at Landguard Bluff, near Wanganui, New Zealand preserve a clear record of relative sea-level changes during oxygen-isotope stage 7. Two relative high sea-level stands (during stages 7a about 210,000 yr ago and 7c about 240,000 yr ago) are separated by a relative low sea level (stage 7b) that was at least 32 m lower than present. Pollen analysis of sediment deposited during stage 7b indicates climate at the time was up to 3°C cooler than present. The climate and sea-level evidence from Landguard Bluff are consistent with oxygen-isotopic evidence from deep-sea cores indicating a marked cooling during stage 7, which is closely associated with a summer radiation minimum centered at about 230,000 yr ago in the Northern Hemisphere.


1982 ◽  
Vol 6 ◽  
pp. 107-126 ◽  
Author(s):  
Kenneth G. Miller

Since the inception of their use in commercial micropaleontology, benthic foraminifera have proven to be eminently useful in the solution of geological problems. The utilitarian credentials of benthic foraminifera in estimating paleodepths from marsh through neritic environments with a reasonable degree of accuracy and to indicate approximate ages (viz. subdivision of series/epochs) have been established in both commercial and academic applications. Benthic foraminifera are generally more resistant to dissolution than planktonic foraminifera, and have wide distributions; many taxa have restricted stratlgraphic ranges, making them suitable for correlation and paleo-environmental studies. Yet, three problems have tended to limit the utility of benthic foraminifera: 1) there is a lack of uniformity in taxonomy (Boltovskoy, 1980; Douglas & Woodruff, 1982); 2) attempts to erect zonal schemes using benthic foraminifera have resulted in boundaries which are later proven to be diachronous relative to planktonic zonatlons (e.g. the California provincial stages, Poore, 1976); and 3) attempts to interpret paleodepths from deep-sea benthic foraminifera have produced widely-varying results. One could perhaps conclude, as Boltovskoy (1965a) did over a decade ago, that these problems indicate “…the near future of this science is rather bleak.”


Nature ◽  
1986 ◽  
Vol 322 (6075) ◽  
pp. 159-162 ◽  
Author(s):  
Emilio Herrero-Bervera ◽  
Fritz Theyer

2013 ◽  
Vol 64 (4) ◽  
pp. 305-326 ◽  
Author(s):  
Dušan Starek ◽  
Ján Soták ◽  
Jozef Jablonský ◽  
Róbert Marschalko

Abstract The deep-water clastic systems of the Central Carpathian Paleogene Basin contain megabeds, which are developed in distinctive stratigraphic horizons and can be traced over long distances. These beds are characterized by great individual thickness (4-13 m), uniform lithology and internal structures. On the basis of their lithology, sedimentary structures and sequence development, the megabeds are characterized by 15 individual facies and interpreted from the viewpoint of flow hydrodynamics. The grain-size distribution and internal structures of the megabeds point to their deposition from uniform turbulent flows. The main controlling factor for generation of such large voluminous flows is inferred in the sea-level changes, when a relative rising of sea level during the Eocene/Oligocene boundary was responsible for long-lasting accumulation of the clastic supply at the basin margins. The large volume of detritus from river discharge and ravinement surfaces of flooded land was accumulated on the shore and in the conduit heads where the sediment was remobilized by other triggers. The flows generated by catastrophic floods during the early Rupelian sea-level lowstand are thought to be the most probably triggering mechanism. The large highly erosive hyperpycnal flows from flooding rivers could erode accumulated deposits in the conduit or on steeper basin-margin slopes and could cause progressive increase of the sand volume in the flow. Conduit flushing appears to be the most probable source of sediment for the very large voluminous flows that were responsible for deposition of the Orava megabeds


Sign in / Sign up

Export Citation Format

Share Document