scholarly journals Epigenomic landscape and 3D genome structure in pediatric high-grade glioma

2021 ◽  
Vol 7 (23) ◽  
pp. eabg4126
Author(s):  
Juan Wang ◽  
Tina Yi-Ting Huang ◽  
Ye Hou ◽  
Elizabeth Bartom ◽  
Xinyan Lu ◽  
...  

Pediatric high-grade gliomas (pHGGs), including glioblastoma multiforme (GBM) and diffuse intrinsic pontine glioma (DIPG), are morbid brain tumors. Even with treatment survival is poor, making pHGG the number one cause of cancer death in children. Up to 80% of DIPGs harbor a somatic missense mutation in genes encoding histone H3. To investigate whether H3K27M is associated with distinct chromatin structure that alters transcription regulation, we generated the first high-resolution Hi-C maps of pHGG cell lines and tumor tissue. By integrating transcriptome (RNA-seq), enhancer landscape (ChIP-seq), genome structure (Hi-C), and chromatin accessibility (ATAC-seq) datasets from H3K27M and wild-type specimens, we identified tumor-specific enhancers and regulatory networks for known oncogenes. We identified genomic structural variations that lead to potential enhancer hijacking and gene coamplification, including A2M, JAG2, and FLRT1. Together, our results imply three-dimensional genome alterations may play a critical role in the pHGG epigenetic landscape and contribute to tumorigenesis.

2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi6-vi6
Author(s):  
Tina Huang ◽  
Juan Wang ◽  
Ye Hu ◽  
Andrea Piunti ◽  
Elizabeth Bartom ◽  
...  

Abstract INTRODUCTION Pediatric high-grade gliomas (pHGGs), including glioblastoma multiforme (GBM) and diffuse intrinsic pontine glioma (DIPG), are highly morbid brain tumors. Up to 80% of DIPGs harbor a somatic missense mutation in genes encoding Histone H3. To investigate whether the H3K27M mutant protein is associated with distinct chromatin structure affecting transcription regulation, we generated the first high-resolution Hi-C and ATAC-Seq maps of pHGG cell lines, and integrated these with tissue and cell genomic data. METHODS We generated sequencing data from patient-derived cell lines (DIPG n=6, GBM n=3, normal n=2) and frozen tissue specimens (DIPG n=1, normal brainstem n=1). Analyses included cell line RNA-Seq, ChIP-Seq (H3K27ac, H3K27me3, H3K27M) and genome-wide chromatin conformation capture (Hi-C), as well as tissue ATAC-Seq. Publicly available pediatric glioma tissue ChIP-Seq data was integrated with cell data. CRISPR knock-down of target enhancer regions was performed. RESULTS We identified tumor-specific enhancers and regulatory networks for known oncogenes in DIPG and GBM. In DIPG, FOX, SOX, STAT and SMAD families were among top H3K27Ac enriched motifs. Significant differences in Topologically Associating Domains (TADs) and DNA looping were observed at OLIG2 and MYCN in H3K27M mutant DIPG, relative to wild-type GBM and normal cells. Pharmacologic treatment targeting H3K27Ac (BET and Bromodomain inhibition) altered these 3D structures. Functional analysis of differentially enriched enhancers in DIPG implicated SOX2, SUZ12, and TRIM24 as top activated upstream regulators. Distinct genomic structural variations leading to enhancer hijacking and gene co-amplification were identified at A2M, JAG2, and FLRT1. CONCLUSION We show genome structural variations enhancer-promoter interactions that impact gene expression in pHGG in the presence and absence of the H3K27M mutation. Our results imply that tridimensional genome alterations may play a critical role in the pHGG epigenetic landscape and thereby contribute to pediatric gliomagenesis. Further studies examining the impact of the alterations is therefore underway.


2021 ◽  
Vol 23 (Supplement_1) ◽  
pp. i17-i17
Author(s):  
Tina Huang ◽  
Juan Wang ◽  
Ye Hou ◽  
Andrea Piunti ◽  
Elizabeth Bartom ◽  
...  

Abstract Introduction Pediatric high-grade gliomas (pHGGs), including glioblastoma multiforme (GBM) and diffuse intrinsic pontine glioma (DIPG), are highly morbid brain tumors. Up to 80% of DIPGs harbor a somatic missense mutation in genes encoding Histone H3. To investigate whether the H3K27M mutant protein is associated with distinct chromatin structure affecting transcription regulation, we generated the first high-resolution Hi-C and ATAC-Seq maps of pHGG cell lines, and integrated these with tissue and cell genomic data. Methods We generated sequencing data from patient-derived cell lines (DIPG n=6, GBM n=3, normal n=2) and frozen tissue specimens (DIPG n=1, normal brainstem n=1). Analyses included cell line RNA-Seq, ChIP-Seq (H3K27ac, H3K27me3, H3K27M) and genome-wide chromatin conformation capture (Hi-C), as well as tissue ATAC-Seq. Publicly available pediatric glioma tissue ChIP-Seq data was integrated with cell data. Results We identified tumor-specific enhancers and regulatory networks for known oncogenes in DIPG and GBM. In DIPG, FOX, SOX, STAT and SMAD families were among top H3K27Ac enriched motifs. Significant differences in Topologically Associating Domains (TADs) and DNA looping were observed at OLIG2 and MYCN in H3K27M mutant DIPG, relative to wild-type GBM and normal cells. Pharmacologic treatment targeting H3K27Ac (BET and Bromodomain inhibition) altered these 3D structures. Functional analysis of differentially enriched enhancers in DIPG implicated SOX2, SUZ12, and TRIM24 as top activated upstream regulators. Distinct genomic structural variations leading to enhancer hijacking and gene co-amplification were identified at A2M, JAG2, and FLRT1. Conclusion We show genome structural variations enhancer-promoter interactions that impact gene expression in pHGG in the presence and absence of the H3K27M mutation. Our results imply that tridimensional genome alterations may play a critical role in the pHGG epigenetic landscape and thereby contribute to pediatric gliomagenesis. Further studies examining the impact of the alterations, including CRISPR knock-down of target enhancer regions, is therefore underway.


Author(s):  
Cong He ◽  
Luoyan Sheng ◽  
Deshen Pan ◽  
Shuai Jiang ◽  
Li Ding ◽  
...  

High-grade glioma is one of the most lethal human cancers characterized by extensive tumor heterogeneity. In order to identify cellular and molecular mechanisms that drive tumor heterogeneity of this lethal disease, we performed single-cell RNA sequencing analysis of one high-grade glioma. Accordingly, we analyzed the individual cellular components in the ecosystem of this tumor. We found that tumor-associated macrophages are predominant in the immune microenvironment. Furthermore, we identified five distinct subpopulations of tumor cells, including one cycling, two OPC/NPC-like and two MES-like cell subpopulations. Moreover, we revealed the evolutionary transition from the cycling to OPC/NPC-like and MES-like cells by trajectory analysis. Importantly, we found that SPP1/CD44 interaction plays a critical role in macrophage-mediated activation of MES-like cells by exploring the cell-cell communication among all cellular components in the tumor ecosystem. Finally, we showed that high expression levels of both SPP1 and CD44 correlate with an increased infiltration of macrophages and poor prognosis of glioma patients. Taken together, this study provided a single-cell atlas of one high-grade glioma and revealed a critical role of macrophage-mediated SPP1/CD44 signaling in glioma progression, indicating that the SPP1/CD44 axis is a potential target for glioma treatment.


2019 ◽  
Vol 1 (Supplement_2) ◽  
pp. ii44-ii44
Author(s):  
Yoshihiro Tsukamoto ◽  
Manabu Natsumeda ◽  
Masayasu Okada ◽  
Takeyoshi Eda ◽  
Junichi Yoshimura ◽  
...  

Abstract INTRODUCTION Bevacizumab (BEV) therapy has been used for pediatric high grade glioma,however the evidence and effectiveness are not understood yet. METHODS We report 7 cases (age 2 to 10 years old) of pediatric high grade glioma treated with BEV. One case is thalamic diffuse midline glioma H3K27 mutant (DMGH3K27M),one case is brain stem DMGH3K27M,one case is cerebellar high grade glioma,and 4 cases are diffuse intrinsic pontine glioma (DIPG) diagnosed clinically without biopsy. 5 cases were treated with BEV when diagnosed as recurrence after chemo-radiotherapy. One case was treated for rapid tumor progression during radiotherapy. One case was started on BEV therapy with radiation and concomitant temozolomide therapy. RESULT The number of times of BEV was 2 to 13 times (median 7 times). The period of BEV was 1 to 9 months (median 4 months). One case which was treated with BEV at rapid progression during radiation showed good response on imaging and improvement of symptoms. 4 of 5 cases who were treated at recurrence clinically showed mild symptomatic improvement. One case treated with BEV and radiotherapy initially was not evaluated. The adverse effects of BEV included wound complication of tracheostomy and rash. CONCLUSION BEV showed good response for rapid progression during radiotherapy,and mild response for recurrence cases. BEV is thought to be an effective therapeutic agent for pediatric HGG at recurrence and rapid tumor progression during radiotherapy.


2016 ◽  
Vol 18 (suppl 3) ◽  
pp. iii76.2-iii76
Author(s):  
John DeSisto ◽  
Patrick Flannery ◽  
Trinayan Kashyap ◽  
Andrew Kung ◽  
Sujatha Venkataraman ◽  
...  

2012 ◽  
Vol 72 (14) ◽  
pp. 3463-3470 ◽  
Author(s):  
Hana Janouskova ◽  
Anne Maglott ◽  
David Y. Leger ◽  
Catherine Bossert ◽  
Fanny Noulet ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document