Atmospheric Methane and Nitrous Oxide of the Late Pleistocene from Antarctic Ice Cores

Science ◽  
2005 ◽  
Vol 310 (5752) ◽  
pp. 1317-1321 ◽  
Author(s):  
R. Spahni
1988 ◽  
Vol 10 ◽  
pp. 73-79 ◽  
Author(s):  
M.A.K. Khalil ◽  
R.A. Rasmussen

We analyzed ice cores from both northern and southern polar regions to determine the concentrations of nitrous oxide in the pre-industrial and ancient atmospheres from about 150 years to 3000 yearsB.P.We found that the pre-industrial concentration of nitrous oxide remained constant over the period we studied and that the average atmospheric concentration was 285 ± 1 ppb volume (90% confidence limits), representing about 2100 Tg (2100 × 1012g) of N20 in the atmosphere, whereas the average concentration in 1984 was about 307 ppb volume or 2260 Tg. This is a change of 22 ppb volume (160 Tg), or about 8%, between pre-industrial and present times. Now the rate of change is between 0.7 and 0.9 ppb volume/year or 5 and 6.5 Tg/year, which is a slow increase of about 0.3% per year. The changes observed are probably caused by increasing use of fossil fuels, particularly coal and oil, and perhaps to a lesser extent by the use of nitrogen fertilizers in recent years. The atmospheric lifetime of N2O is probably between 100 and 150 years. The pre-industrial concentrations, present levels, and a lifetime of 100 years are consistent with natural sources, mostly soils and oceans, of about 22 Tg/year and the present anthropogenic sources of about 8.7 Tg/year. In the next 50 years we expect nitrous oxide levels to reach 360–390 ppb volume, or about 16–25% more than present.


1988 ◽  
Vol 10 ◽  
pp. 73-79 ◽  
Author(s):  
M.A.K. Khalil ◽  
R.A. Rasmussen

We analyzed ice cores from both northern and southern polar regions to determine the concentrations of nitrous oxide in the pre-industrial and ancient atmospheres from about 150 years to 3000 yearsB.P.We found that the pre-industrial concentration of nitrous oxide remained constant over the period we studied and that the average atmospheric concentration was 285 ± 1 ppb volume (90% confidence limits), representing about 2100 Tg (2100 × 1012g) of N20 in the atmosphere, whereas the average concentration in 1984 was about 307 ppb volume or 2260 Tg. This is a change of 22 ppb volume (160 Tg), or about 8%, between pre-industrial and present times. Now the rate of change is between 0.7 and 0.9 ppb volume/year or 5 and 6.5 Tg/year, which is a slow increase of about 0.3% per year. The changes observed are probably caused by increasing use of fossil fuels, particularly coal and oil, and perhaps to a lesser extent by the use of nitrogen fertilizers in recent years. The atmospheric lifetime of N2O is probably between 100 and 150 years. The pre-industrial concentrations, present levels, and a lifetime of 100 years are consistent with natural sources, mostly soils and oceans, of about 22 Tg/year and the present anthropogenic sources of about 8.7 Tg/year. In the next 50 years we expect nitrous oxide levels to reach 360–390 ppb volume, or about 16–25% more than present.


2012 ◽  
Vol 9 (5) ◽  
pp. 5471-5508 ◽  
Author(s):  
M. Baumgartner ◽  
A. Schilt ◽  
O. Eicher ◽  
J. Schmitt ◽  
J. Schwander ◽  
...  

Abstract. Reconstructions of past atmospheric methane concentrations are available from ice cores from both, Greenland and Antarctica. The difference observed between the two polar methane concentration levels is a valuable additional parameter which allows to constrain the geographical location of the responsible methane sources. Here we present new high-resolution methane records from the North Greenland Ice Core Project (NGRIP) and the European Project for Ice Coring in Antarctica (EPICA) Dronning Maud Land (EDML) ice cores covering Termination 1, the Last Glacial Maximum, and parts of the last glacial back to 32 000 years before present. Due to the high-resolution records the synchronisation between the ice cores from NGRIP and EDML is considerably improved and the interpolar concentration difference of methane is determined with unprecedented precision and temporal resolution. Relative to the mean methane concentration, we find a rather stable positive interpolar difference throughout the record with its minimum value of 3.7 ± 0.7 % between 21 900–21 200 years before present, which is higher than previously estimated in this interval close to the Last Glacial Maximum. This implies that Northern Hemisphere boreal wetland sources were never completely shut off during the peak glacial. Starting at 21 000 years before present, i.e. severval millenia prior to the transition into the Holocene, the relative interpolar difference becomes even more positive and stays at a fairly stable level of 6.5 ± 0.8 % during Termination 1. We hypothesise that the anti-correlation observed in the monsoon records from the Northern and Southern Hemispheres induces a methane source redistribution within lower latitudes, which could explain parts of the variations in the interpolar difference.


2017 ◽  
Vol 29 (3) ◽  
pp. 239-251 ◽  
Author(s):  
Kate M. Swanger

AbstractBuried glacier ice is common in the McMurdo Dry Valleys and under ideal climatic and geomorphological conditions may be preserved for multimillion-year timescales. This study focuses on the analysis of ~300 m2 of buried glacier ice in lower Kennar Valley, Quartermain Range. The mapped ice is clean,<10 m thick and covered by a~25 cm sandy drift. The mouth of Kennar Valley is occupied by a lobe of Taylor Glacier, an outlet glacier from Taylor Dome. Based on ice–sediment characteristics, air bubble concentrations and stable isotopic analyses from three ice cores, the lower Kennar Valley ice is glacial in origin. These data coupled with a previously reported exposure age chronology indicate that the buried ice was deposited by a late Pleistocene advance of Taylor Glacier, probably during an interglacial interval. The surface of the buried glacier ice exhibits a patterned ground morphology characterized by small, dome-shaped polygons with deep troughs. This shape possibly reflects the final stages of ice loss, as stagnant, isolated ice pinnacles sublimate in place. This study highlights how polygon morphology can be used to infer the thickness of clean buried ice and its geomorphological stability throughout Antarctica, as well as other in cold, arid landscapes.


2020 ◽  
Author(s):  
Ingeborg Bussmann ◽  
Irina Fedorova ◽  
Bennet Juhls ◽  
Pier Paul Overduin ◽  
Matthias Winkel

Abstract. Arctic regions and their water bodies are being affected by the most rapid climate warming on Earth. Arctic lakes and small ponds are known to act as an important source of atmospheric methane. However, not much is known about other types of water bodies in permafrost regions, which include major rivers and coastal bays as a transition type between freshwater and marine environments. We monitored dissolved methane concentrations in three different water bodies (Lena River, Tiksi Bay and Lake Golzovoye, Siberia, Russia) over a period of two years. Sampling was carried out under ice cover (April) and in open water (July/August). The methane oxidation (MOX) rate in water and melted ice samples from the late winter of 2017 was also investigated. In the Lena River winter methane concentrations were a quarter of the summer concentrations (8 vs 31 nmol L−1) and mean winter MOX rate was low (0.023 nmol L−1 d−1). In contrast, Tiksi Bay winter methane concentrations were 10-times higher than in summer (103 vs 13 nmol L−1). Winter MOX rates showed a median of 0.305 nmol L−1 d−1. In Lake Golzovoye, median methane concentrations in winter were 40-times higher than in summer (1957 vs 49 nmol L−1). However, MOX was much higher in the lake (2.95 nmol L−1 d−1) than in either the river or bay. The temperature had a strong influence on the MOX, (Q10 = 2.72 ± 0.69) compared to temperate environments. In the ice cores a median methane concentration of 9 nM was observed, with no gradient between the ice surface and the bottom layer at the ice-water-interface. MOX in the (melted) ice cores was mostly below the detection limit. Comparing methane concentrations in the ice with the underlaying water column revealed 100 – 1000-times higher methane concentration in the water column. The winter situation seemed to favor a methane accumulation under ice, especially in the lake with a stagnant water body. While on the other hand, in the Lena River with its flowing water no methane accumulation under ice was observed. Methane oxidation rate was not able to counteract this winter time accumulation.


2014 ◽  
Vol 10 (3) ◽  
pp. 1195-1209 ◽  
Author(s):  
T. J. Fudge ◽  
E. D. Waddington ◽  
H. Conway ◽  
J. M. D. Lundin ◽  
K. Taylor

Abstract. Antarctic ice cores have often been dated by matching distinctive features of atmospheric methane to those detected in annually dated ice cores from Greenland. Establishing the timescale between these tie-point ages requires interpolation. While the uncertainty at tie points is relatively well described, uncertainty of the interpolation is not. Here we assess the accuracy of three interpolation schemes using data from the WAIS Divide ice core in West Antarctica; we compare the interpolation methods with the annually resolved timescale for the past 30 kyr. Linear interpolation yields large age errors (up to 380 years) between tie points, abrupt changes in duration of climate events at tie points, and an age bias. Interpolations based on the smoothest accumulation rate (ACCUM) or the smoothest annual-layer thickness (ALT) yield timescales that more closely agree with the annually resolved timescale and do not have abrupt changes in duration at tie points. We use ALT to assess the uncertainty in existing timescales for the past 30 kyr from Byrd, Siple Dome, and Law Dome. These ice-core timescales were developed with methods similar to linear interpolation. Maximum age differences exceed 1000 years for Byrd and Siple Dome, and 500 years for Law Dome. For the glacial–interglacial transition (21 to 12 kyr), the existing timescales are, on average, older than ALT by 40 years for Byrd, 240 years for Siple Dome, and 150 years for Law Dome. Because interpolation uncertainty is often not considered, age uncertainties for ice-core records are often underestimated.


Sign in / Sign up

Export Citation Format

Share Document