Mechanics of Epithelial Tissue Homeostasis and Morphogenesis

Science ◽  
2013 ◽  
Vol 340 (6137) ◽  
pp. 1185-1189 ◽  
Author(s):  
Charlène Guillot ◽  
Thomas Lecuit

Epithelia are robust tissues that support the structure of embryos and organs and serve as effective barriers against pathogens. Epithelia also chemically separate different physiological environments. These vital functions require tight association between cells through the assembly of junctions that mechanically stabilize the tissue. Remarkably, epithelia are also dynamic and can display a fluid behavior. Cells continuously die or divide, thereby allowing functional tissue homeostasis. Epithelial cells can change shape or intercalate as tissues deform during morphogenesis. We review the mechanical basis of tissue robustness and fluidity, with an emphasis on the pivotal role of junction dynamics. Tissue fluidity emerges from local active stresses acting at cell interfaces and allows the maintenance of epithelial organization during morphogenesis and tissue renewal.

2015 ◽  
Vol 13 (6) ◽  
pp. 479-489
Author(s):  
Amelie Saint Jean ◽  
Thomas Bourlet ◽  
Olivier Delezay
Keyword(s):  

2011 ◽  
Vol 195 (1) ◽  
pp. 71-86 ◽  
Author(s):  
Carly Willenborg ◽  
Jian Jing ◽  
Christine Wu ◽  
Hugo Matern ◽  
Jerome Schaack ◽  
...  

During the morphogenesis of the epithelial lumen, apical proteins are thought to be transported via endocytic compartments to the site of the forming lumen, although the machinery mediating this transport remains to be elucidated. Rab11 GTPase and its binding protein, FIP5, are important regulators of polarized endocytic transport. In this study, we identify sorting nexin 18 as a novel FIP5-interacting protein and characterize the role of FIP5 and SNX18 in epithelial lumen morphogenesis. We show that FIP5 mediates the transport of apical proteins from apical endosomes to the apical plasma membrane and, along with SNX18, is required for the early stages of apical lumen formation. Furthermore, both proteins bind lipids, and FIP5 promotes the capacity of SNX18 to tubulate membranes, which implies a role for FIP5 and SNX18 in endocytic carrier formation and/or scission. In summary, the present findings support the hypothesis that this FIP5-SNX18 complex plays a pivotal role in the polarized transport of apical proteins during apical lumen initiation in epithelial cells.


2021 ◽  
Vol 8 ◽  
Author(s):  
Iaroslav Semin ◽  
Justus Ninnemann ◽  
Marina Bondareva ◽  
Ilia Gimaev ◽  
Andrey A. Kruglov

The intestinal tract is densely populated by microbiota consisting of various commensal microorganisms that are instrumental for the healthy state of the living organism. Such commensals generate various molecules that can be recognized by the Toll-like receptors of the immune system leading to the inflammation marked by strong upregulation of various proinflammatory cytokines, such as TNF, IL-6, and IL-1β. To prevent excessive inflammation, a single layer of constantly renewing, highly proliferating epithelial cells (IEC) provides proper segregation of such microorganisms from the body cavities. There are various triggers which facilitate the disturbance of the epithelial barrier which often leads to inflammation. However, the nature and duration of the stress may determine the state of the epithelial cells and their responses to cytokines. Here we discuss the role of the microbiota-TLR-cytokine axis in the maintenance of the epithelial tissue integrity. In particular, we highlight discrepancies in the function of TLR and cytokines in IEC barrier during acute or chronic inflammation and we suggest that intervention strategies should be applied based on the type of inflammation.


2015 ◽  
Vol 2015 ◽  
pp. 1-15 ◽  
Author(s):  
Paul M. Peeters ◽  
Emiel F. Wouters ◽  
Niki L. Reynaert

The epithelium regulates the interaction between the noxious xenogenous, as well as the microbial environment and the immune system, not only by providing a barrier but also by expressing a number of immunoregulatory membrane receptors, and intracellular danger sensors and their downstream effectors. Amongst these are a number of inflammasome sensor subtypes, which have been initially characterized in myeloid cells and described to be activated upon assembly into multiprotein complexes by microbial and environmental triggers. This review compiles a vast amount of literature that supports a pivotal role for inflammasomes in the various epithelial barriers of the human body as essential factors maintaining immune signaling and homeostasis.


Nitric Oxide ◽  
2009 ◽  
Vol 20 (3) ◽  
pp. 143-149 ◽  
Author(s):  
Arnaud Chambellan ◽  
Rachel Leahy ◽  
Weiling Xu ◽  
Paul J. Cruickshank ◽  
Allison Janocha ◽  
...  

Author(s):  
W.T. Gunning ◽  
M.R. Marino ◽  
M.S. Babcock ◽  
G.D. Stoner

The role of calcium in modulating cellular replication and differentiation has been described for various cell types. In the present study, the effects of Ca++ on the growth and differentiation of cultured rat esophageal epithelial cells was investigated.Epithelial cells were isolated from esophagi taken from 8 week-old male CDF rats by the enzymatic dissociation method of Kaighn. The cells were cultured in PFMR-4 medium supplemented with 0.25 mg/ml dialyzed fetal bovine serum, 5 ng/ml epidermal growth factor, 10-6 M hydrocortisone 10-6 M phosphoethanolamine, 10-6 M ethanolamine, 5 pg/ml insulin, 5 ng/ml transferrin, 10 ng/ml cholera toxin and 50 ng/ml garamycin at 36.5°C in a humidified atmosphere of 3% CO2 in air. At weekly intervals, the cells were subcultured with a solution containing 1% polyvinylpyrrolidone, 0.01% EGTA, and 0.05% trypsin. After various passages, the replication rate of the cells in PFMR-4 medium containing from 10-6 M to 10-3 M Ca++ was determined using a clonal growth assay.


Pneumologie ◽  
2011 ◽  
Vol 65 (12) ◽  
Author(s):  
S Rim ◽  
S Jahan ◽  
G John ◽  
K Kohse ◽  
A Bohla ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document